pybind.cc 22.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16 17 18 19 20 21
#include <algorithm>
#include <map>
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
22

Y
Yi Wang 已提交
23
#include "paddle/fluid/pybind/protobuf.h"
Q
qijun 已提交
24

Y
Yi Wang 已提交
25
#include "paddle/fluid/framework/backward.h"
26
#include "paddle/fluid/framework/channel.h"
Y
Yi Wang 已提交
27 28 29 30 31 32 33
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/init.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
Y
Yu Yang 已提交
34
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
36
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
37 38 39 40 41 42 43 44 45
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/cond_op.h"
#include "paddle/fluid/operators/net_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
#include "paddle/fluid/pybind/pybind.h"
Y
Yu Yang 已提交
46
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
47
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
48

49
#include "paddle/fluid/string/to_string.h"
50

D
Dong Zhihong 已提交
51
#ifdef PADDLE_WITH_CUDA
Y
Yi Wang 已提交
52 53 54
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
55 56
#endif

Q
Qiao Longfei 已提交
57 58 59
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

60
namespace paddle {
61
namespace pybind {
62
bool IsCompiledWithCUDA() {
63
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
64 65 66 67 68 69
  return false;
#else
  return true;
#endif
}

70 71
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of PaddlePaddle");
72

73 74 75 76
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

77
  BindException(&m);
Y
Yu Yang 已提交
78

79 80 81
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
82
      .def("get_dims",
83
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
84
      .def("set_dims",
Q
qijun 已提交
85
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
86
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
87
           })
D
dzhwinter 已提交
88 89 90 91
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
92
      .def("alloc_float",
D
dzhwinter 已提交
93
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
94
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
95
           })
Q
qijun 已提交
96
      .def("alloc_float",
Y
Yu Yang 已提交
97
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
98
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
99 100
           })
      .def("alloc_int",
Y
Yu Yang 已提交
101
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
102
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
103
           })
Q
qijun 已提交
104
      .def("alloc_int",
D
dzhwinter 已提交
105
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
106
             self.mutable_data<int>(place);
Q
qijun 已提交
107
           })
C
chengduoZH 已提交
108 109 110 111 112 113 114 115
      .def("alloc_int",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
      .def("alloc_float",
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
116 117
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
118
      .def("set", PyCPUTensorSetFromArray<double>)
119
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
120
      .def("set", PyCPUTensorSetFromArray<bool>)
121
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
122
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
123 124
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
125
      .def("set", PyCUDATensorSetFromArray<double>)
126
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
127
      .def("set", PyCUDATensorSetFromArray<bool>)
128
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
C
chengduoZH 已提交
129 130 131 132 133 134
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
Q
qijun 已提交
135
#endif
136
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
137 138 139 140 141
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
142

143
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
144 145
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
146 147 148
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
D
dzhwinter 已提交
149 150 151 152
            LoD new_lod;
            new_lod.reserve(lod.size());
            std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
            new (&instance) LoDTensor(new_lod);
153
          })
Y
Yu Yang 已提交
154
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
155
      .def("set_lod",
156
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
Y
Yu Yang 已提交
157
             LoD new_lod;
158 159 160
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
D
dangqingqing 已提交
161
           })
162
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
D
dzhwinter 已提交
163 164 165 166 167
        auto lod = self.lod();
        std::vector<std::vector<size_t>> new_lod;
        new_lod.reserve(lod.size());
        std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
        return new_lod;
D
dangqingqing 已提交
168 169
      });

Q
qijun 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
183 184 185 186 187 188 189 190 191
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
192 193 194 195 196 197 198 199 200 201 202
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
203

204
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
205 206 207

All parameter, weight, gradient are variables in Paddle.
)DOC")
208
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
209
      .def("set_int",
210 211
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
212 213 214 215 216 217 218
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
219
      .def("get_tensor",
220 221
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
222 223
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
224 225 226
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
227 228 229 230 231
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
232 233 234
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
235 236 237 238 239 240 241
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
242
      .def("get_net",
D
dongzhihong 已提交
243 244
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
245
           },
Y
Refine  
Yu Yang 已提交
246 247 248 249 250 251
           py::return_value_policy::reference)
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
Y
Yu Yang 已提交
252
           py::return_value_policy::reference);
253

Y
Refine  
Yu Yang 已提交
254 255 256 257
  py::class_<framework::ReaderHolder>(m, "Reader", "")
      .def("has_next", &framework::ReaderHolder::HasNext)
      .def("reset", &framework::ReaderHolder::ReInit);

258
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
259
      .def("var",
260
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
261
             return self.Var(name);
Y
Yu Yang 已提交
262
           },
263
           py::return_value_policy::reference)
264
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
265
      .def(py::init<>())
266
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
267
           py::return_value_policy::reference)
Y
Yu Yang 已提交
268
      .def("drop_kids", &Scope::DropKids);
269

Y
Yu Yang 已提交
270 271
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
272 273
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
274 275 276 277 278 279 280 281 282 283
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
284 285
    return ret_values;
  });
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
302
  m.def("prune", [](const ProgramDesc &origin,
303
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
304
    ProgramDesc prog_with_targets(origin);
305
    for (const auto &t : targets) {
306
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
307
    }
308
    proto::ProgramDesc pruned_desc;
309
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
310
    return new ProgramDesc(pruned_desc);
311
  });
Y
Yu Yang 已提交
312
  m.def("inference_optimize", [](ProgramDesc &origin) {
313
    proto::ProgramDesc pruned_desc;
314
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
315
    return new ProgramDesc(pruned_desc);
316
  });
F
fengjiayi 已提交
317 318
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
319 320 321
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
322 323
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
324
  // clang-format off
Y
Yu Yang 已提交
325
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
326 327
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
328
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
329 330 331
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
332
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
333
                      -> paddle::platform::DeviceContext* {
334
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
335
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
336
#else
Q
qijun 已提交
337
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
338
#endif
C
chengduoZH 已提交
339 340 341 342 343 344 345 346 347 348 349
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
350 351 352 353
// clang-format on
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
354
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
355
      .def(py::init<int>())
D
dzhwinter 已提交
356
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
357

358 359 360
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
361

C
chengduoZH 已提交
362 363 364 365
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
366 367 368 369 370 371 372
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
373
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
374
             self = gpu_place;
C
chengduoZH 已提交
375 376
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
377 378
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
379
      });
Y
Yu Yang 已提交
380

Y
Yu Yang 已提交
381 382 383
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
384
                    proto::OpDesc desc;
Y
Yu Yang 已提交
385 386 387 388 389
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
390
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
391 392 393 394 395 396
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
397
      .def("run",
398
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
399 400 401
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
402
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
403 404 405 406 407
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
408 409 410 411 412 413 414
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
415 416
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
417
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
418
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
419 420 421 422
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
423

Y
Yu Yang 已提交
424 425 426 427 428 429 430
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
431 432
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
433 434 435 436
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
437

Z
cond op  
zchen0211 已提交
438 439 440 441
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
442
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
443 444 445 446 447
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
448
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
449 450 451 452 453 454 455 456 457 458 459
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
460
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
461
      .def(py::init<const platform::Place &>())
462 463 464
      .def("run",
           (void (Executor::*)(const ProgramDesc &, Scope *, int, bool, bool)) &
               Executor::Run);
F
fengjiayi 已提交
465

D
dzhwinter 已提交
466
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
467
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
468 469
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
470

471
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
472 473 474 475 476 477
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
478

479
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
480
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
481

482 483 484 485 486
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
487

Y
Yu Yang 已提交
488 489 490 491 492 493 494 495 496
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
514
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
515
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
516
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
517 518 519 520

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
521
#endif
Y
Yu Yang 已提交
522

523 524 525 526
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
527
      .value("kAll", platform::ProfilerState::kAll)
528 529 530 531 532 533 534 535 536 537 538 539 540 541
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
542

Y
Yu Yang 已提交
543
  py::class_<ParallelExecutor>(m, "ParallelExecutor")
Y
Yu Yang 已提交
544
      .def("__init__",
545
           [](ParallelExecutor &self, size_t num_threads, bool use_event,
Y
Yu Yang 已提交
546 547
              const std::vector<platform::Place> &places,
              const std::unordered_set<std::string> &params,
548
              const std::unordered_set<std::string> &bcast_vars,
Y
Yu Yang 已提交
549
              const ProgramDesc &main_program, const std::string &loss_var_name,
550 551 552 553 554 555
              Scope *scope, std::vector<Scope *> &local_scopes,
              bool allow_op_delay) {
             new (&self)
                 ParallelExecutor(num_threads, use_event, places, params,
                                  bcast_vars, main_program, loss_var_name,
                                  scope, local_scopes, allow_op_delay);
Y
Yu Yang 已提交
556
           })
557 558 559 560 561
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
562
      .def("run", &ParallelExecutor::Run);
Y
Yu Yang 已提交
563

564
  BindRecordIOWriter(&m);
565
  return m.ptr();
L
Luo Tao 已提交
566
}
567
}  // namespace pybind
568
}  // namespace paddle