large_scale_kv.h 24.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

L
Leo Chen 已提交
17
#include <ThreadPool.h>
18 19 20 21
#include <functional>
#include <future>  // NOLINT
#include <memory>
#include <string>
L
Leo Chen 已提交
22
#include <thread>  // NOLINT
23 24 25 26
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
27
#include "gflags/gflags.h"
28

29
#include "paddle/fluid/framework/generator.h"
30 31 32 33 34 35
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/rw_lock.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/threadpool.h"
#include "paddle/fluid/framework/variable.h"
T
tangwei12 已提交
36
#include "paddle/fluid/platform/device_context.h"
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"
#include "paddle/fluid/string/printf.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace operators {
namespace distributed {

enum Mode { training, infer };
enum InitType { uniform_random, fill_constant, gaussian_random };

inline std::vector<int> bucket(const int v_size, const int b_size) {
  int remainder = v_size % b_size;
  int bucket = v_size / b_size;
  std::vector<int> ret_vec(b_size, bucket);
  for (int i = 0; i < remainder; ++i) {
    ret_vec[i] = ret_vec[i] + 1;
  }
  int cur_bucket = 0;
  for (int &j : ret_vec) {
    int tmp = j;
    j = cur_bucket;
    cur_bucket += tmp;
  }
  ret_vec.push_back(cur_bucket);
  return ret_vec;
}

class Initializer {
 public:
  Initializer() {}

  explicit Initializer(const std::vector<std::string> &attrs) {}

  virtual float GetValue() = 0;

  virtual ~Initializer() {}

 protected:
  std::string name_;
  unsigned int seed_;
};

class UniformInitializer : public Initializer {
 public:
  explicit UniformInitializer(const std::vector<std::string> &attrs) {
    name_ = attrs[0];
    seed_ = static_cast<unsigned int>(std::stoi(attrs[1]));
    min_ = std::stof(attrs[2]);
    max_ = std::stof(attrs[3]);

    dist_ = std::uniform_real_distribution<float>(min_, max_);
L
Leo Chen 已提交
91
    random_engine_ = framework::GetCPURandomEngine(seed_);
92 93
  }

L
Leo Chen 已提交
94
  float GetValue() override { return dist_(*random_engine_); }
95 96 97 98 99

 private:
  float min_;
  float max_;

L
Leo Chen 已提交
100
  std::shared_ptr<std::mt19937_64> random_engine_;
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
  std::uniform_real_distribution<float> dist_;
};

template <typename T>
inline bool entry(const int count, const T threshold);

template <>
inline bool entry<std::string>(const int count, const std::string threshold) {
  return true;
}

template <>
inline bool entry<int>(const int count, const int threshold) {
  return count >= threshold;
}

template <>
inline bool entry<float>(const int count, const float threshold) {
  UniformInitializer uniform = UniformInitializer({"0", "0", "1"});
  return uniform.GetValue() >= threshold;
}

class GaussianInitializer : public Initializer {
 public:
  explicit GaussianInitializer(const std::vector<std::string> &attrs) {
    name_ = attrs[0];
    seed_ = static_cast<unsigned int>(std::stoi(attrs[1]));
    mean_ = std::stof(attrs[2]);
    std_ = std::stof(attrs[3]);

L
Leo Chen 已提交
131
    random_engine_ = framework::GetCPURandomEngine(seed_);
132 133 134 135

    dist_ = std::normal_distribution<float>(mean_, std_);
  }

L
Leo Chen 已提交
136
  float GetValue() override { return dist_(*random_engine_); }
137 138 139 140 141

 private:
  float std_;
  float mean_;

L
Leo Chen 已提交
142
  std::shared_ptr<std::mt19937_64> random_engine_;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  std::normal_distribution<float> dist_;
};

class FillConstantInitializer : public Initializer {
 public:
  explicit FillConstantInitializer(const std::vector<std::string> &attrs) {
    name_ = attrs[0];
    value_ = std::stof(attrs[1]);
  }

  float GetValue() override { return value_; }

 private:
  float value_;
};

struct SparseMeta {
  std::string name;
  std::string grad_name;
  std::vector<std::string> value_names;
  std::vector<int> value_dims;
  std::vector<std::string> cached_varnames;
  std::vector<std::string> initializer_attrs;
  std::string entry;
  Mode mode;

  std::string ToString() {
    std::stringstream ss;
    ss << "name: " << name << " ";
    ss << "mode: " << mode << " ";

    for (int i = 0; i < static_cast<int>(value_names.size()); i++) {
      ss << "value_name: " << value_names[i] << " dim: " << value_dims[i]
         << " ";
    }

    ss << " grad var: " << grad_name;

    ss << " cached varnames: ";
    for (int i = 0; i < static_cast<int>(cached_varnames.size()); i++) {
      ss << cached_varnames[i] << " ";
    }

    ss << " initializer attrs: ";
    for (int i = 0; i < static_cast<int>(initializer_attrs.size()); i++) {
      ss << initializer_attrs[i] << " ";
    }

    ss << " entry attrs: " << entry;

    return ss.str();
  }
};

struct VALUE {
  explicit VALUE(const std::vector<std::string> &names)
      : names_(names), count_(0), unseen_days_(0) {
    values_.resize(names.size());
    for (int i = 0; i < static_cast<int>(names.size()); i++) {
      places[names[i]] = i;
    }
  }

  void set(std::vector<std::vector<float>> *values) {
    values_ = std::move(*values);
  }

  void set(const std::vector<std::string> &names,
           const std::vector<std::vector<float>> &values) {
    for (int i = 0; i < static_cast<int>(names.size()); i++) {
      auto idx = places[names[i]];
      auto value = values[i];
      values_[idx].assign(value.begin(), value.end());
    }
  }

  std::vector<std::vector<float> *> get() {
    auto pts = std::vector<std::vector<float> *>();
    pts.reserve(values_.size());

    for (auto &value : values_) {
      pts.push_back(&value);
    }
    return pts;
  }

  int fetch_count() { return ++count_; }
  void reset_unseen_days() { unseen_days_ = 0; }

  void set_entry(bool is_entry) { is_entry_ = is_entry; }

  bool get_entry() { return is_entry_; }

  std::vector<std::vector<float> *> get(const std::vector<std::string> names) {
    auto pts = std::vector<std::vector<float> *>();
    pts.reserve(values_.size());

    for (int i = 0; i < static_cast<int>(names.size()); i++) {
      pts.push_back(&(values_[places[names[i]]]));
    }
    return pts;
  }

  std::vector<std::string> names_;
  int count_;
248
  bool seen_after_last_save_;
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
  int unseen_days_;
  bool is_entry_;
  std::vector<std::vector<float>> values_;
  std::unordered_map<std::string, int> places;
};

class ValueBlock {
 public:
  explicit ValueBlock(const std::vector<std::string> value_names,
                      const std::vector<int> value_dims, const Mode &mode,
                      const std::vector<std::string> &init_attrs,
                      const std::string &entry_attr)
      : value_names_(value_names), value_dims_(value_dims), mode_(mode) {
    // for Initializer
    for (size_t i = 0; i < value_names.size(); i++) {
      auto name = value_names[i];
      auto slices = string::split_string<std::string>(init_attrs[i], "&");

      if (slices[0] == "gaussian_random") {
        initializers_[name] = new GaussianInitializer(slices);
      } else if (slices[0] == "fill_constant") {
        initializers_[name] = new FillConstantInitializer(slices);
      } else if (slices[0] == "uniform_random") {
        initializers_[name] = new UniformInitializer(slices);
      } else {
        PADDLE_THROW(
            platform::errors::InvalidArgument("%s can not be supported", name));
      }
    }

    // for Entry
    {
      if (entry_attr == "none") {
        entry_func_ =
            std::bind(entry<std::string>, std::placeholders::_1, "none");
      } else {
        auto slices = string::split_string<std::string>(entry_attr, "&");
        if (slices[0] == "count_filter") {
          int threshold = std::stoi(slices[1]);
          entry_func_ = std::bind(entry<int>, std::placeholders::_1, threshold);
        } else if (slices[0] == "probability") {
          float threshold = std::stof(slices[1]);
          entry_func_ =
              std::bind(entry<float>, std::placeholders::_1, threshold);
        }
      }
    }

    rwlock_.reset(new framework::RWLock);
  }

  ~ValueBlock() {
    //    for (auto init : initializers_) {
    //      delete init.second;
    //      initializers_.erase(init.first);
    //    }
    //
    //    for (auto value : values_) {
    //      delete value.second;
    //      values_.erase(value.first);
    //    }
  }

  void Init(const int64_t &id, std::vector<std::vector<float>> *values,
            int count) {
    if (Has(id)) {
      PADDLE_THROW(platform::errors::AlreadyExists("id already exist, error"));
    }

    if (values->size() != value_names_.size()) {
      PADDLE_THROW(
          platform::errors::AlreadyExists("values can not match, error"));
    }

    auto value = new VALUE(value_names_);
    value->set(values);
325
    value->seen_after_last_save_ = true;
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    value->count_ = count;
    values_[id] = value;
  }

  std::vector<std::vector<float> *> Get(
      const int64_t &id, const std::vector<std::string> &value_names) {
    rwlock_->RDLock();
    auto ret_values = values_.at(id)->get(value_names);
    rwlock_->UNLock();
    return ret_values;
  }

  void InitFromInitializer(const int64_t &id,
                           const std::vector<std::string> &value_names) {
    rwlock_->WRLock();

    if (Has(id)) {
      Update(id);
      rwlock_->UNLock();
      return;
    }

    auto rets = std::vector<std::vector<float>>();
    rets.resize(value_names_.size());

    for (int i = 0; i < static_cast<int>(value_names_.size()); i++) {
      auto name = value_names_[i];
      auto *init = initializers_.at(name);

      auto dim = value_dims_[i];
      rets[i].resize(dim);

      for (int j = 0; j < static_cast<int>(dim); j++) {
        rets[i][j] = init->GetValue();
      }
    }

    Init(id, &rets, 0);
    Update(id);
    rwlock_->UNLock();
  }

  bool GetEntry(const int64_t &id) {
    rwlock_->RDLock();
    auto value = values_.at(id);
    auto entry = value->get_entry();
    rwlock_->UNLock();
    return entry;
  }

  void Set(const int64_t &id, const std::vector<std::string> &value_names,
           const std::vector<std::vector<float>> &values) {
    rwlock_->WRLock();
    auto value = values_.at(id);
    value->set(value_names, values);
    rwlock_->UNLock();
  }

  void Update(const int64_t id) {
    auto *value = values_.at(id);
    value->reset_unseen_days();
    auto count = value->fetch_count();

    if (!value->get_entry()) {
      value->set_entry(entry_func_(count));
    }
  }

 private:
  bool Has(const int64_t id) {
    auto got = values_.find(id);
    if (got == values_.end()) {
      return false;
    } else {
      return true;
    }
  }

 public:
  std::unordered_map<int64_t, VALUE *> values_;

 private:
  std::vector<std::string> value_names_;
  std::vector<int> value_dims_;
  Mode mode_;
  std::function<bool(int64_t)> entry_func_;
  std::unordered_map<std::string, Initializer *> initializers_;
  std::unique_ptr<framework::RWLock> rwlock_{nullptr};
};

class SparseVariable {
 public:
  explicit SparseVariable(const SparseMeta &meta) {
    meta_.name = meta.name;
    meta_.mode = meta.mode;
    meta_.value_names = meta.value_names;
    meta_.value_dims = meta.value_dims;
    meta_.grad_name = meta.grad_name;
    meta_.cached_varnames = meta.cached_varnames;
    meta_.initializer_attrs = meta.initializer_attrs;
    meta_.entry = meta.entry;

    for (int i = 0; i < static_cast<int>(meta_.value_names.size()); i++) {
      values_dims_[meta_.value_names[i]] = meta_.value_dims[i];
    }

    for (size_t i = 0; i < shard_num_; i++) {
      auto block = std::make_shared<ValueBlock>(
          meta.value_names, meta.value_dims, meta.mode, meta.initializer_attrs,
          meta.entry);
      shard_blocks_.emplace_back(block);
    }

    rwlock_.reset(new framework::RWLock);
  }

  void Init(const std::vector<int64_t> &ids) {
    rwlock_->RDLock();
    for (auto &id : ids) {
      auto *block = GetShard(id);
      block->InitFromInitializer(id, meta_.value_names);
    }
    rwlock_->UNLock();
  }

  void Get(const std::vector<int64_t> &ids,
           const std::vector<std::string> &value_names,
           std::vector<std::vector<std::vector<float> *>> *values) {
    values->resize(ids.size());

    auto buckets = bucket(ids.size(), 8);
    std::vector<std::future<void>> fs;

    for (int j = 0; j < 8; ++j) {
      auto begin = buckets[j];
      auto end = buckets[j + 1];

      fs.push_back(
          framework::Async([begin, end, &values, &ids, &value_names, this]() {
            for (int x = begin; x < end; x++) {
              auto id = ids[x];
              auto *block = GetShard(id);
              auto id_values = block->Get(id, value_names);
              (*values)[x] = id_values;
            }
          }));
    }

    for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
  }

  void GetEntry(const std::vector<int64_t> &ids, std::vector<int64_t> *values) {
    auto buckets = bucket(ids.size(), 8);
    std::vector<std::future<void>> fs;

    for (int j = 0; j < 8; ++j) {
      auto begin = buckets[j];
      auto end = buckets[j + 1];

      fs.push_back(framework::Async([begin, end, &values, &ids, this]() {
        for (int x = begin; x < end; x++) {
          auto id = ids[x];
          auto *block = GetShard(id);
          auto is_entry = block->GetEntry(id);

          if (!is_entry) {
            values->push_back(id);
          }
        }
      }));
    }
    for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
  }

  void Set(const std::vector<int64_t> &ids,
           const std::vector<std::string> &value_names,
           const std::vector<std::vector<std::vector<float>>> &values) {
    for (int i = 0; i < static_cast<int>(ids.size()); i++) {
      GetShard(ids[i])->Set(ids[i], value_names, values[i]);
    }
  }

  void Dims(std::vector<std::string> value_names, std::vector<int64_t> *dims) {
    for (auto &name : value_names) {
      dims->push_back(values_dims_.at(name));
    }
  }

  std::vector<std::string> CachedVarnames() const {
    return meta_.cached_varnames;
  }

  void Load(const std::string &dirname) {
    rwlock_->WRLock();
    VLOG(1) << "load " << meta_.name << " from dir: " << dirname << " begin";

    std::vector<std::string> filenames;
    for (auto &value_name : meta_.value_names) {
      auto filename = string::Sprintf("%s/%s", dirname, value_name);
      filenames.push_back(filename);
    }

    LoadFromSelectedRows(filenames, meta_.value_names);
    VLOG(1) << "load " << meta_.name << " in dir: " << dirname << " done";
    rwlock_->UNLock();
  }

  void LoadFromSelectedRows(const std::vector<std::string> &filenames,
                            const std::vector<std::string> &valuenames) {
    std::vector<std::shared_ptr<framework::Variable>> variables;
    auto place = platform::CPUPlace();

    for (int i = 0; i < static_cast<int>(filenames.size()); i++) {
      auto var = std::make_shared<framework::Variable>();
      variables.push_back(var);
      auto &filename = filenames[i];
      std::ifstream fin(filename, std::ios::binary);
      auto *selectedRows = var->GetMutable<framework::SelectedRows>();

      platform::DeviceContextPool &pool =
          platform::DeviceContextPool::Instance();
      auto &dev_ctx = *pool.Get(place);

      framework::DeserializeFromStream(fin, selectedRows, dev_ctx);
      selectedRows->SyncIndex();
    }

    std::vector<const float *> tensors;

    for (int i = 0; i < static_cast<int>(filenames.size()); i++) {
      auto &slr = variables[i]->Get<framework::SelectedRows>();
      auto src_t = slr.value();
      const auto *value = src_t.data<float>();
      tensors.push_back(value);
    }

    for (int i = 1; i < static_cast<int>(filenames.size()); i++) {
      auto rows_0 = variables[0]->Get<framework::SelectedRows>().rows();
      auto rows_i = variables[i]->Get<framework::SelectedRows>().rows();

      bool is_equal = std::equal(rows_0.begin(), rows_0.end(), rows_i.begin());

      if (!is_equal) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "%s and %s are not equal, can not be load rightly", filenames[0],
            filenames[i]));
      }
    }

    auto rows = variables[0]->Get<framework::SelectedRows>().rows();

    for (auto i = 0; i < static_cast<int64_t>(rows.size()); i++) {
      auto id = rows[i];
      std::vector<std::vector<float>> values;
      values.resize(filenames.size());

      for (int j = 0; j < static_cast<int>(filenames.size()); ++j) {
        values[j].resize(meta_.value_dims[j]);
        std::memcpy(values[j].data(), tensors[j] + i * meta_.value_dims[j],
                    sizeof(float) * meta_.value_dims[j]);
      }

      auto *block = GetShard(id);
      block->Init(id, &values, 0);
      block->Update(id);
    }
  }

594
  void Save(const std::string &dirname, const int mode = 0) {
595
    rwlock_->WRLock();
596
    VLOG(3) << "save " << meta_.name << " in dir: " << dirname << " begin";
597 598 599 600 601 602 603 604 605

    MkDirRecursively(dirname.c_str());

    std::vector<std::string> filenames;
    for (auto &value_name : meta_.value_names) {
      auto filename = string::Sprintf("%s/%s", dirname, value_name);
      filenames.push_back(filename);
    }

606 607
    SaveToSelectedRows(filenames, meta_.value_names, mode);
    VLOG(3) << "save " << meta_.name << " in dir: " << dirname << " done";
608 609 610 611
    rwlock_->UNLock();
  }

  void SaveToSelectedRows(const std::vector<std::string> &filenames,
612 613
                          const std::vector<std::string> &valuenames,
                          const int mode) {
614 615 616 617 618 619 620 621 622 623 624 625 626
    for (auto &value_name : valuenames) {
      auto it = std::find(meta_.value_names.begin(), meta_.value_names.end(),
                          value_name);
      if (it == meta_.value_names.end()) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "[%s] is invalid param for [%s]", value_name, meta_.name));
      }
    }

    auto place = platform::CPUPlace();
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(place);

627 628
    std::vector<int64_t> ids;

629
    for (auto &block : shard_blocks_) {
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
      for (auto value : block->values_) {
        if (mode == 0) {
          ids.push_back(value.first);
        } else {
          bool id_need_save = false;
          // save all params
          if (mode == 1) {
            id_need_save = true;
          } else {
            id_need_save = value.second->seen_after_last_save_;
          }

          if (id_need_save) {
            ids.push_back(value.first);
          }
          value.second->seen_after_last_save_ = false;
        }
      }
648 649
    }

650 651 652
    VLOG(3) << "save " << ids.size() << " feasigns for " << meta_.name
            << " with mode: " << mode;

653 654 655 656 657 658 659 660 661 662
    std::vector<std::shared_ptr<framework::Variable>> variables;
    std::vector<float *> tensors;
    std::vector<int64_t> dims;

    for (int i = 0; i < static_cast<int>(filenames.size()); i++) {
      auto dim = values_dims_.at(valuenames[i]);
      auto var = std::make_shared<framework::Variable>();
      auto *slr = var->GetMutable<framework::SelectedRows>();
      auto *src_t = slr->mutable_value();

663
      src_t->Resize({static_cast<int64_t>(ids.size()), dim});
664 665 666 667 668 669 670
      auto *value = src_t->mutable_data<float>(place);

      dims.push_back(dim);
      variables.push_back(var);
      tensors.push_back(value);
    }

671 672
    std::vector<std::vector<std::vector<float> *>> values;
    Get(ids, valuenames, &values);
673

674 675 676 677 678 679
    int64_t offset = 0;
    for (auto &vss : values) {
      for (int i = 0; i < static_cast<int>(vss.size()); i++) {
        auto &vs = vss[i];
        std::memcpy(tensors[i] + offset * dims[i], vs->data(),
                    sizeof(float) * dims[i]);
680
      }
681
      offset += 1;
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
    }

    for (auto &var : variables) {
      auto *slr = var->GetMutable<framework::SelectedRows>();
      slr->set_rows(ids);
      slr->set_height(ids.size());
    }

    for (int i = 0; i < static_cast<int>(filenames.size()); i++) {
      auto &filename = filenames[i];
      auto &selectedRows = variables[i]->Get<framework::SelectedRows>();

      std::ofstream fout(filename, std::ios::binary);
      PADDLE_ENFORCE_EQ(static_cast<bool>(fout), true,
                        platform::errors::Unavailable(
                            "Cannot open %s to save variables.", filename));

      framework::SerializeToStream(fout, selectedRows, dev_ctx);
      fout.close();
    }
  }

  void SaveToText(const std::vector<std::string> &filenames,
                  const std::vector<std::string> &valuenames) {
    for (auto &value_name : valuenames) {
      auto it = std::find(meta_.value_names.begin(), meta_.value_names.end(),
                          value_name);
      if (it == meta_.value_names.end()) {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "[%s] is invalid param for [%s]", value_name, meta_.name));
      }
    }

    std::vector<std::unique_ptr<std::ofstream>> fouts;

    for (auto filename : filenames) {
      std::unique_ptr<std::ofstream> fout(new std::ofstream(filename));
      fouts.push_back(std::move(fout));
    }

    for (auto &block : shard_blocks_) {
      for (auto value : block->values_) {
        std::vector<std::vector<float> *> vss = value.second->get(valuenames);

        auto id = value.first;

        for (int i = 0; i < static_cast<int>(vss.size()); i++) {
          auto &vs = vss[i];
          std::stringstream ss;
          ss << id << "\t";
          ss << vs->size() << "\t";
          for (auto v : (*vs)) {
            ss << v << " ";
          }
          ss << "\n";

          fouts[i]->write(ss.str().c_str(), sizeof(char) * ss.str().size());
        }
      }
    }

    for (int i = 0; i < static_cast<int>(fouts.size()); i++) {
      fouts[i]->close();
    }
  }

  int64_t Size() {
    int64_t cnt = 0;

    for (auto &block : shard_blocks_) {
      cnt += block->values_.size();
    }
    return cnt;
  }

  ValueBlock *GetShard(const int64_t id) {
    return shard_blocks_[id & shard_mask_].get();
  }

  SparseMeta *GetMeta() { return &meta_; }

 private:
  std::unique_ptr<framework::RWLock> rwlock_{nullptr};

  SparseMeta meta_;
  std::unordered_map<std::string, int64_t> values_dims_;
  const size_t shard_mask_ = 127;
  const size_t shard_num_ = 128;
  std::vector<std::shared_ptr<ValueBlock>> shard_blocks_;
};

class LargeScaleKV {
 public:
  LargeScaleKV() {}

  explicit LargeScaleKV(const std::vector<SparseMeta> &table_metas) {
    for (auto &sparse_meta : table_metas) {
      auto table_name = sparse_meta.name;
      auto meta = std::shared_ptr<SparseVariable>(
          new SparseVariable(std::move(sparse_meta)));
      sparse_variables[table_name] = meta;
      grad_to_variables[sparse_meta.grad_name] = table_name;
      grad_names_.push_back(sparse_meta.grad_name);
    }
  }

  ~LargeScaleKV() {}

  static std::shared_ptr<LargeScaleKV> GetInstantcePtr() { return scale_kv_; }

  static LargeScaleKV *GetInstance() { return scale_kv_.get(); }

  static LargeScaleKV *InitInstance(
      const std::vector<SparseMeta> &table_metas) {
    std::call_once(init_flag_, &LargeScaleKV::Init, table_metas);
    return scale_kv_.get();
  }

  static void Init(const std::vector<SparseMeta> &table_metas) {
    if (scale_kv_.get() == nullptr) {
      scale_kv_.reset(new LargeScaleKV(table_metas));
    }
  }

  SparseVariable *Get(const std::string &name) {
    auto variable = sparse_variables.at(name);
    return variable.get();
  }

  bool ParamInLargeScale(const std::string &name) {
    auto got = sparse_variables.find(name);

    if (got == sparse_variables.end()) {
      return false;
    }

    return true;
  }

  bool GradInLargeScale(const std::string &name) {
    auto got = grad_to_variables.find(name);

    if (got == grad_to_variables.end()) {
      return false;
    }

    return true;
  }

  SparseVariable *GetByGrad(const std::string &name) {
    return Get(grad_to_variables[name]);
  }

  const std::vector<std::string> &GetAllGrads() { return grad_names_; }

 private:
  std::unordered_map<std::string, std::shared_ptr<SparseVariable>>
      sparse_variables;
  std::unordered_map<std::string, std::string> grad_to_variables;
  std::vector<std::string> grad_names_;
  static std::shared_ptr<LargeScaleKV> scale_kv_;
  static std::once_flag init_flag_;
};

}  // namespace distributed
}  // namespace operators
}  // namespace paddle