reduce.py 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.framework as framework
16 17 18 19 20 21 22
import paddle.fluid.data_feeder as data_feeder
import paddle.fluid.layer_helper as layer_helper
from paddle.distributed.communication.group import (
    _get_global_group,
    _warn_cur_rank_not_in_group,
    _get_or_throw_group_rank,
)
23 24 25
from paddle.distributed.communication.reduce import _get_reduce_op, ReduceOp


26 27 28
def _reduce_in_dygraph(
    tensor, dst_rank_in_group, op, group, sync_op, use_calc_stream
):
29 30
    op_type = _get_reduce_op(op, "reduce")
    if use_calc_stream:
31 32 33
        return group.process_group.reduce_on_calc_stream(
            tensor, dst_rank_in_group, op_type
        )
34

35 36 37
    task = group.process_group.reduce(
        tensor, dst_rank_in_group, op_type, sync_op
    )
38 39 40 41 42 43
    if sync_op:
        task.wait()

    return task


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def _reduce_in_static_mode(
    tensor, dst_rank_in_group, op, group, sync_op, use_calc_stream
):
    data_feeder.check_variable_and_dtype(
        tensor,
        'tensor',
        [
            'float16',
            'float32',
            'float64',
            'int32',
            'int64',
            'int8',
            'uint8',
            'bool',
        ],
        'reduce',
    )

    op_type = _get_reduce_op(op, "reduce")
    ring_id = 0 if group is None else group.id

    helper = layer_helper.LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        inputs={'X': [tensor]},
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': sync_op,
            'root_id': dst_rank_in_group,
        },
    )
    return None


80 81 82 83 84 85 86 87
def reduce(
    tensor,
    dst=0,
    op=ReduceOp.SUM,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
    """

    Perform specific reduction (for example, sum, max) on a tensor across devices and send to the destintion device.

    Args:
        tensor (Tensor): The input tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        dst (int, optional): Rank of the destination device. If none is given, use `0` as default.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            local_rank = dist.get_rank()
            if local_rank == 0:
                data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
            else:
                data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            task = dist.stream.reduce(data, dst=0, sync_op=False)
            task.wait()
            out = data.numpy()
            # [[5, 7, 9], [5, 7, 9]] (2 GPUs, out for rank 0)
            # [[1, 2, 3], [1, 2, 3]] (2 GPUs, out for rank 1)
    """
127 128
    if _warn_cur_rank_not_in_group(group):
        return
129 130 131

    if not sync_op and use_calc_stream:
        raise RuntimeError(
132 133
            "use_calc_stream can only be true in sync op behavior."
        )
134 135

    if framework.in_dygraph_mode():
136 137
        group = _get_global_group() if group is None else group
        dst_rank_in_group = _get_or_throw_group_rank(dst, group)
138
        return _reduce_in_dygraph(
139 140 141 142 143
            tensor, dst_rank_in_group, op, group, sync_op, use_calc_stream
        )
    else:
        assert group is None, "Group can not be used in static mode for now."
        return _reduce_in_static_mode(
144 145
            tensor, dst, op, group, sync_op, use_calc_stream
        )