recv.py 4.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.framework as framework
16 17 18 19 20 21 22 23 24 25 26 27
import paddle.fluid.data_feeder as data_feeder
import paddle.fluid.layer_helper as layer_helper
from paddle.distributed.communication.group import (
    _get_global_group,
    _warn_cur_rank_not_in_group,
    _get_or_throw_group_rank,
)


def _recv_in_dygraph(
    tensor, src_rank_in_group, group, sync_op, use_calc_stream
):
28
    if use_calc_stream:
29 30 31
        return group.process_group.recv_on_calc_stream(
            tensor, src_rank_in_group
        )
32

33
    task = group.process_group.recv(tensor, src_rank_in_group, sync_op)
34 35 36 37 38 39
    if sync_op:
        task.wait()

    return task


40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
def _recv_in_static_mode(
    tensor, src_rank_in_group, group, sync_op, use_calc_stream
):
    op_type = 'recv_v2'
    data_feeder.check_variable_and_dtype(
        tensor,
        'tensor',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'recv',
    )
    ring_id = 0 if group is None else group.id
    helper = layer_helper.LayerHelper(op_type, **locals())
    helper.append_op(
        type=op_type,
        outputs={'Out': [tensor]},
        attrs={
            'ring_id': ring_id,
            'peer': src_rank_in_group,
            'out_shape': tensor.shape,
            'dtype': tensor.dtype,
            'use_calc_stream': sync_op,
        },
    )
    return None


66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
def recv(tensor, src=0, group=None, sync_op=True, use_calc_stream=False):
    """

    Receive a tensor from the source device.

    Args:
        tensor (Tensor): The tensor to receive. Support float16, float32, float64, int32, int64, int8, uint8 or bool as its data type.
        src (int, optional): Rank of the source device. If none is given, use `0` as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            local_rank = dist.get_rank()
            if local_rank == 0:
                data = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
                task = dist.stream.send(data, dst=1, sync_op=False)
            else:
                data = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
                task = dist.stream.recv(data, src=0, sync_op=False)
            task.wait()
            out = data.numpy()
99
            # [[4, 5, 6], [4, 5, 6]] (2 GPUs)
100
    """
101 102
    if _warn_cur_rank_not_in_group(group):
        return
103 104 105

    if not sync_op and use_calc_stream:
        raise RuntimeError(
106 107
            "use_calc_stream can only be True in sync op behavior."
        )
108 109

    if framework.in_dygraph_mode():
110 111
        group = _get_global_group() if group is None else group
        src_rank_in_group = _get_or_throw_group_rank(src, group)
112

113 114 115 116 117 118 119 120
        return _recv_in_dygraph(
            tensor, src_rank_in_group, group, sync_op, use_calc_stream
        )
    else:
        assert group is None, "Group can not be used in static mode for now."
        return _recv_in_static_mode(
            tensor, src, group, sync_op, use_calc_stream
        )