all_to_all.py 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid.framework as framework
import paddle.distributed as dist
import paddle.fluid.data_feeder as data_feeder
import paddle.fluid.layer_helper as layer_helper
from paddle.distributed.communication.group import (
    _get_global_group,
    _warn_cur_rank_not_in_group,
)


def _check_tensor_shape(tensor, shape, nranks=1):
    if tensor.shape != shape:
        raise RuntimeError('The tensor for alltoall is not correctly-sized.')


def _check_tensor_list_shape(tensor_list, shape, nranks=1):
    if len(tensor_list) != nranks:
        raise RuntimeError(
            'The tensor_list for alltoall is not correctly-sized.'
        )
    for tensor in tensor_list:
        if tensor.shape != shape:
            raise RuntimeError(
                'The tensor_list for alltoall is not correctly-sized.'
            )


def _all_to_all_tensor_in_dygraph(
    out_tensor, in_tensor, group, sync_op, use_calc_stream
):

    _check_tensor_shape(out_tensor, in_tensor.shape, group.nranks)

    if use_calc_stream:
        return group.process_group.alltoall_tensor_on_calc_stream(
            in_tensor, out_tensor
        )

    task = group.process_group.alltoall_tensor(in_tensor, out_tensor, sync_op)
    if sync_op:
        task.wait()

    return task


def _all_to_all_in_dygraph(
    out_tensor_list, in_tensor_list, group, sync_op, use_calc_stream
):
    if len(in_tensor_list) == 0:
        raise RuntimeError("The input tensor_list should not be empty.")

    if len(out_tensor_list) == 0:
        out_tensor_list += [
            paddle.empty_like(tensor) for tensor in in_tensor_list
        ]
    else:
        _check_tensor_list_shape(
            out_tensor_list, in_tensor_list[0].shape, group.nranks
        )

    if use_calc_stream:
        return group.process_group.alltoall_on_calc_stream(
            in_tensor_list, out_tensor_list
        )

    task = group.process_group.alltoall(
        in_tensor_list, out_tensor_list, sync_op
    )
    if sync_op:
        task.wait()

    return task


def _all_to_all_in_static_mode(
    out_tensor_or_tensor_list,
    in_tensor_or_tensor_list,
    group,
    sync_op,
    use_calc_stream,
):
    op_type = 'alltoall'
    ring_id = 0 if group is None else group.id
    nranks = dist.get_world_size()
    helper = layer_helper.LayerHelper(op_type, **locals())

    in_tensor = in_tensor_or_tensor_list
    if isinstance(in_tensor_or_tensor_list, list):
        if len(in_tensor_or_tensor_list) == 0:
            raise RuntimeError("The input tensor_list should not be empty.")
        in_tensor = paddle.concat(in_tensor_or_tensor_list, axis=0)
    out_tensor = out_tensor_or_tensor_list
    if isinstance(out_tensor_or_tensor_list, list):
        if len(out_tensor_or_tensor_list) != 0:
            raise ValueError(
                "The 'out_tensor_list' for all_to_all " "must be an empty list."
            )
        out_tensor = helper.create_variable_for_type_inference(
            dtype=in_tensor.dtype
        )

    data_feeder.check_variable_and_dtype(
        in_tensor,
        'in_tensor',
        ['float16', 'float32', 'float64', 'int32', 'int64'],
        'all_to_all',
    )
    helper.append_op(
        type=op_type,
        inputs={'X': [in_tensor]},
        outputs={'Out': [out_tensor]},
        attrs={
            'ring_id': ring_id,
            'use_calc_stream': sync_op,
        },
    )
    # NOTE(liyurui): If the argument `out_tensor_or_tensor_list` is a tensor_list,
    # we need to split the result. So we should wait the result of all_to_all
    # before split if the communication is not on calc stream.
    if isinstance(out_tensor_or_tensor_list, list):
        if not sync_op:
            dist.wait(out_tensor, use_calc_stream=False)
        out_tensor_or_tensor_list.extend(paddle.split(out_tensor, nranks, 0))

    return None


def alltoall(
    out_tensor_or_tensor_list,
    in_tensor_or_tensor_list,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
    """

    Scatter a tensor (or a tensor list) across devices and gather outputs to another tensor (or a tensor list, respectively).

    Args:
        out_tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The output. If it is a tensor, it should be correctly-sized.
        If it is a list, it should be empty or contain correctly-sized tensors. Its data type should be the same as the input.
        in_tensor_or_tensor_list (Union[Tensor, List[Tensor]]): The input to scatter (must be specified on the source rank).
            If it is a tensor, it should be correctly-sized. If it is a list, it should contain correctly-sized tensors. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            out_tensor_list = []
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
                data2 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]])
            else:
                data1 = paddle.to_tensor([[13, 14, 15], [16, 17, 18]])
                data2 = paddle.to_tensor([[19, 20, 21], [22, 23, 24]])
            task = dist.stream.alltoall(out_tensor_list, [data1, data2], sync_op=False)
            task.wait()
            print(out_tensor_list)
            # [[[1, 2, 3], [4, 5, 6]], [[13, 14, 15], [16, 17, 18]]]    (2 GPUs, out for rank 0)
            # [[[7, 8, 9], [10, 11, 12]], [[19, 20, 21], [22, 23, 24]]] (2 GPUs, out for rank 1)
    """
    if _warn_cur_rank_not_in_group(group):
        return

    if not sync_op and use_calc_stream:
        raise RuntimeError(
            "use_calc_stream can only be true in sync op behavior."
        )

    if out_tensor_or_tensor_list is None:
        raise RuntimeError("The output should be specified.")
    if in_tensor_or_tensor_list is None:
        raise RuntimeError("The input should be specified.")

    if framework.in_dygraph_mode():
        group = _get_global_group() if group is None else group
        out_is_tensor = paddle.is_tensor(out_tensor_or_tensor_list)
        in_is_tensor = paddle.is_tensor(in_tensor_or_tensor_list)
        if out_is_tensor and in_is_tensor:
            return _all_to_all_tensor_in_dygraph(
                out_tensor_or_tensor_list,
                in_tensor_or_tensor_list,
                group,
                sync_op,
                use_calc_stream,
            )
        elif not out_is_tensor and not in_is_tensor:
            return _all_to_all_in_dygraph(
                out_tensor_or_tensor_list,
                in_tensor_or_tensor_list,
                group,
                sync_op,
                use_calc_stream,
            )
        else:
            raise RuntimeError(
                "The output and input should be both tensor or tensor list."
            )
    else:
        assert group is None, "Group can not be used in static mode for now."
        return _all_to_all_in_static_mode(
            out_tensor_or_tensor_list,
            in_tensor_or_tensor_list,
            group,
            sync_op,
            use_calc_stream,
        )


def _alltoall_single_in_dygraph(
    out_tensor,
    in_tensor,
    out_split_sizes,
    in_split_sizes,
    group,
    sync_op,
    use_calc_stream,
):
    if out_split_sizes is None:
        out_split_sizes = []
    if in_split_sizes is None:
        in_split_sizes = []

    if use_calc_stream:
        return group.process_group.alltoall_single_on_calc_stream(
            in_tensor, out_tensor, in_split_sizes, out_split_sizes
        )

    task = group.process_group.alltoall_single(
        in_tensor, out_tensor, in_split_sizes, out_split_sizes, sync_op
    )
    if sync_op:
        task.wait()

    return task


def alltoall_single(
    out_tensor,
    in_tensor,
    out_split_sizes=None,
    in_split_sizes=None,
    group=None,
    sync_op=True,
    use_calc_stream=False,
):
    """

    Split and Scatter the splitted input tensor to the out tensor across devices.

    Args:
        out_tensor(Tensor): The output tensor. Its data type should be the same as the input.
        in_tensor (Tensor): The input tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8 or bool.
        out_split_sizes (List[int], optional): Split sizes of out_tensor for dim[0]. If not given, dim[0] of out_tensor must be divisible
            by group size and out_tensor will be gathered averagely from all participators. If none is given, use a empty list as default.
        in_split_sizes (List[int], optional): Split sizes of in_tensor for dim[0]. If not given, dim[0] of in_tensor must be divisible
        by group size and in_tensor will be scattered averagely to all participators. If none is given, use a empty list as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.
        use_calc_stream (bool, optional): Indicate whether the communication is done on calculation stream. If none is given, use false as default. This
            option is designed for high performance demand, be careful to turn it on except you are clearly know its meaning.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode now.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            local_rank = dist.get_rank()

            # case 1
            output = paddle.empty([2], dtype="int64")
            if local_rank == 0:
                data = paddle.to_tensor([0, 1])
            else:
                data = paddle.to_tensor([2, 3])
            task = dist.stream.alltoall_single(output, data, sync_op=False)
            task.wait()
            out = output.numpy()
            # [0, 2] (2 GPUs, out for rank 0)
            # [1, 3] (2 GPUs, out for rank 1)

            # case 2
            size = dist.get_world_size()
            output = paddle.empty([(local_rank + 1) * size, size], dtype='float32')
            if local_rank == 0:
                data = paddle.to_tensor([[0., 0.], [0., 0.], [0., 0.]])
            else:
                data = paddle.to_tensor([[1., 1.], [1., 1.], [1., 1.]])
            out_split_sizes = [local_rank + 1 for i in range(size)]
            in_split_sizes = [i + 1 for i in range(size)]
            task = dist.stream.alltoall_single(output,
                                            data,
                                            out_split_sizes,
                                            in_split_sizes,
                                            sync_op=False)
            task.wait()
            out = output.numpy()
            # [[0., 0.], [1., 1.]]                     (2 GPUs, out for rank 0)
            # [[0., 0.], [0., 0.], [1., 1.], [1., 1.]] (2 GPUs, out for rank 1)
    """
    if _warn_cur_rank_not_in_group(group):
        return

    if not sync_op and use_calc_stream:
        raise RuntimeError(
            "use_calc_stream can only be true in sync op behavior."
        )

    if framework.in_dygraph_mode():
        group = _get_global_group() if group is None else group
        return _alltoall_single_in_dygraph(
            out_tensor,
            in_tensor,
            out_split_sizes,
            in_split_sizes,
            group,
            sync_op,
            use_calc_stream,
        )

    raise RuntimeError(
        "paddle.distributed.stream.alltoall_single is only supported in dygraph mode now."
    )