tensor_utils.cc 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/pten/api/lib/utils/tensor_utils.h"
16

17
#include <utility>
18 19 20 21
#include <vector>

#include "paddle/pten/core/compat_utils.h"

22 23 24 25 26 27 28 29 30 31 32 33 34
namespace paddle {
namespace experimental {

template <typename DstLoD, typename SrcLoD>
void SetLoD(DstLoD* dst, const SrcLoD& src) {
  dst->reserve(src.size());
  dst->clear();
  for (auto&& v : src) {
    dst->emplace_back(v);
  }
}

std::unique_ptr<pten::DenseTensor> MakePtenDenseTensor(
35
    const paddle::framework::Tensor& src) {
36
  return std::make_unique<pten::DenseTensor>(src);
37 38
}

39
pten::Scalar MakePtenScalar(const paddle::framework::Tensor& src) {
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
  PADDLE_ENFORCE_EQ(src.numel(),
                    1,
                    paddle::platform::errors::InvalidArgument(
                        "The Scalar only supports Tensor with 1 element, "
                        "but now Tensor has %d element.",
                        src.numel()));
  switch (src.type()) {
    case paddle::framework::proto::VarType::FP32:
      return {src.template data<float>()[0]};
    case paddle::framework::proto::VarType::FP64:
      return {src.template data<double>()[0]};
    case paddle::framework::proto::VarType::FP16:
      return {src.template data<float16>()[0]};
    case paddle::framework::proto::VarType::BF16:
      return {src.template data<bfloat16>()[0]};
    case paddle::framework::proto::VarType::INT32:
      return {src.template data<int32_t>()[0]};
    case paddle::framework::proto::VarType::INT64:
      return {src.template data<int64_t>()[0]};
    case paddle::framework::proto::VarType::INT16:
      return {src.template data<int16_t>()[0]};
    case paddle::framework::proto::VarType::INT8:
      return {src.template data<int8_t>()[0]};
    case paddle::framework::proto::VarType::UINT8:
      return {src.template data<uint8_t>()[0]};
    case paddle::framework::proto::VarType::BOOL:
      return {src.template data<bool>()[0]};
    case paddle::framework::proto::VarType::COMPLEX64:
      return {src.template data<complex64>()[0]};
    case paddle::framework::proto::VarType::COMPLEX128:
      return {src.template data<complex128>()[0]};
    default:
      PADDLE_THROW(paddle::platform::errors::InvalidArgument(
          "Data type error. Don't support casting a %d LoDTensor to Scalar.",
          src.type()));
  }
}

pten::Scalar MakePtenScalarFromVar(const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalar(tmp_tensor);
    } else {
      return MakePtenScalar(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to Scalar when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

97
pten::ScalarArray MakePtenScalarArray(const paddle::framework::Tensor& src) {
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
  if (src.type() == paddle::framework::proto::VarType::INT64) {
    return {src.data<int64_t>(), src.numel()};
  } else if (src.type() == paddle::framework::proto::VarType::INT32) {
    return {src.data<int32_t>(), src.numel()};
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to ScalarArray, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        src.type()));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVar(
    const framework::Variable& variable) {
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);
  if (variable.IsType<framework::LoDTensor>()) {
    const auto& tensor = variable.Get<framework::LoDTensor>();
    if (!platform::is_same_place(tensor.place(), expected_place)) {
      framework::LoDTensor tmp_tensor;
      framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
      return MakePtenScalarArray(tmp_tensor);
    } else {
      return MakePtenScalarArray(tensor);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to ScalarArray when call pt "
        "kernel.",
        framework::ToTypeName(variable.Type())));
  }
}

pten::ScalarArray MakePtenScalarArrayFromVarList(
    const std::vector<framework::Variable*>& variable_list) {
  if (variable_list.size() == 0) {
    return pten::ScalarArray();
  }
  auto expected_place = pten::TransToFluidPlace(pten::Backend::CPU);

  paddle::framework::proto::VarType::Type data_type;
  auto* first_var = variable_list.front();
  if (first_var->IsType<framework::LoDTensor>()) {
    const auto& tensor = first_var->Get<framework::LoDTensor>();
    data_type = tensor.type();
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupport casting input `%s` type to VectorTensor when call pt "
        "kernel.",
        framework::ToTypeName(first_var->Type())));
  }

  std::vector<int64_t> vector_data;
  vector_data.reserve(variable_list.size());

  if (data_type == paddle::framework::proto::VarType::INT64) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int64_t>());
        } else {
          vector_data.push_back(*tensor.data<int64_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }

  } else if (data_type == paddle::framework::proto::VarType::INT32) {
    for (auto* var : variable_list) {
      if (var->IsType<framework::LoDTensor>()) {
        const auto& tensor = var->Get<framework::LoDTensor>();
        if (!platform::is_same_place(tensor.place(), expected_place)) {
          framework::LoDTensor tmp_tensor;
          framework::TensorCopySync(tensor, expected_place, &tmp_tensor);
          vector_data.push_back(*tmp_tensor.data<int32_t>());
        } else {
          vector_data.push_back(*tensor.data<int32_t>());
        }
      } else {
        PADDLE_THROW(platform::errors::Unimplemented(
            "Unsupport casting input `%s` type to VectorTensor when call pt "
            "kernel.",
            framework::ToTypeName(var->Type())));
      }
    }
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Data type error. When cast a LoDTensor to VectorTensor, "
        "the data type of LoDTensor must be int32 or int64, "
        "but now data type is %s.",
        data_type));
  }

  return {vector_data};
}

201
void SharesStorageBase(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
202 203 204 205 206 207 208 209
  PADDLE_ENFORCE_NOT_NULL(
      src,
      platform::errors::InvalidArgument(
          "The source DenseTensor is nullptr when move allocation."));
  PADDLE_ENFORCE_NOT_NULL(
      dst,
      platform::errors::InvalidArgument(
          "The destination Tensor is nullptr when move allocation."));
210
  dst->Resize(src->dims());
211
  dst->ResetHolderWithType(src->Holder(),
212
                           pten::TransToProtoVarType(src->dtype()));
213
  dst->set_offset(src->meta().offset);
214 215
}

216 217
void SharesStorage(pten::DenseTensor* src, paddle::framework::Tensor* dst) {
  SharesStorageBase(src, static_cast<paddle::framework::Tensor*>(dst));
218 219 220
  SetLoD(dst->mutable_lod(), src->lod());
}

221 222 223 224 225 226 227 228 229 230 231 232
static bool IsSameAllocation(const std::shared_ptr<memory::Allocation>& a,
                             const std::shared_ptr<memory::Allocation>& b) {
  return a->ptr() == b->ptr() && a->size() == b->size() &&
         platform::is_same_place(a->place(), b->place());
}

void MakeVariableFromPtenTensor(pten::DenseTensor* src,
                                framework::Variable* variable) {
  if (variable->IsType<framework::LoDTensor>()) {
    auto* tensor = variable->GetMutable<framework::LoDTensor>();

    auto dtype = pten::TransToProtoVarType(src->dtype());
233
    tensor->Resize(src->dims());
234 235 236 237
    SetLoD(tensor->mutable_lod(), src->lod());

    if (!tensor->IsInitialized() ||
        (tensor->IsInitialized() &&
238 239
         !IsSameAllocation(tensor->Holder(), src->Holder()))) {
      tensor->ResetHolderWithType(std::move(src->Holder()), dtype);
240 241 242 243 244 245 246 247
    } else {
      // Even the pten tensor and Variable have the same Alloctation (both have
      // the same pointer address, same size and same place)
      // but there is possible that they do not have the same data_type.
      // so, here we set the variable's type with the pten tensor dtype.
      tensor->set_type(dtype);
    }

248 249
  } else if (variable->IsType<pten::SelectedRows>()) {
    auto* tensor = variable->GetMutable<pten::SelectedRows>();
250 251 252
    auto dtype = pten::TransToProtoVarType(src->dtype());

    if (!tensor->value().IsInitialized()) {
253 254
      tensor->mutable_value()->ResetHolderWithType(std::move(src->Holder()),
                                                   dtype);
255 256 257 258 259 260 261 262
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported shared input `%s` type now when call pt kernel.",
        framework::ToTypeName(variable->Type())));
  }
}

263 264 265 266 267 268 269 270
void ResetTensorByArgDef(pten::DenseTensor* dst,
                         const pten::TensorArgDef& arg_def) {
  VLOG(5) << "ResetTensor by TensorArgDef.";
  auto* meta = pten::CompatibleDenseTensorUtils::GetMutableMeta(dst);
  meta->dtype = arg_def.dtype;
  meta->layout = arg_def.layout;
}

271 272
}  // namespace experimental
}  // namespace paddle