test_bfgs.py 5.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np

import paddle
import paddle.nn.functional as F

from paddle.incubate.optimizer.functional.bfgs import minimize_bfgs
23
from paddle.fluid.framework import _test_eager_guard
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

np.random.seed(123)


def test_static_graph(func, x0, line_search_fn='strong_wolfe', dtype='float32'):
    dimension = x0.shape[0]
    paddle.enable_static()
    main = paddle.static.Program()
    startup = paddle.static.Program()
    with paddle.static.program_guard(main, startup):
        X = paddle.static.data(name='x', shape=[dimension], dtype=dtype)
        Y = minimize_bfgs(func, X, line_search_fn=line_search_fn, dtype=dtype)

    exe = paddle.static.Executor()
    exe.run(startup)
    return exe.run(main, feed={'x': x0}, fetch_list=[Y])


def test_static_graph_H0(func, x0, H0, dtype='float32'):
    paddle.enable_static()
    main = paddle.static.Program()
    startup = paddle.static.Program()
    with paddle.static.program_guard(main, startup):
        X = paddle.static.data(name='x', shape=[x0.shape[0]], dtype=dtype)
        H = paddle.static.data(
            name='h', shape=[H0.shape[0], H0.shape[1]], dtype=dtype)
        Y = minimize_bfgs(
            func, X, initial_inverse_hessian_estimate=H, dtype=dtype)

    exe = paddle.static.Executor()
    exe.run(startup)
    return exe.run(main, feed={'x': x0, 'h': H0}, fetch_list=[Y])


def test_dynamic_graph(func,
                       x0,
                       H0=None,
                       line_search_fn='strong_wolfe',
                       dtype='float32'):
    paddle.disable_static()
    x0 = paddle.to_tensor(x0)
    if H0 is not None:
        H0 = paddle.to_tensor(H0)
    return minimize_bfgs(
        func,
        x0,
        initial_inverse_hessian_estimate=H0,
        line_search_fn=line_search_fn,
        dtype=dtype)


class TestBfgs(unittest.TestCase):
    def test_quadratic_nd(self):
        for dimension in [1, 10]:
            minimum = np.random.random(size=[dimension]).astype('float32')
            scale = np.exp(np.random.random(size=[dimension]).astype('float32'))

            def func(x):
                minimum_ = paddle.assign(minimum)
                scale_ = paddle.assign(scale)
                return paddle.sum(
                    paddle.multiply(scale_, (F.square_error_cost(x, minimum_))))

            x0 = np.random.random(size=[dimension]).astype('float32')
            results = test_static_graph(func=func, x0=x0)
            self.assertTrue(np.allclose(minimum, results[2]))

            results = test_dynamic_graph(func=func, x0=x0)
            self.assertTrue(np.allclose(minimum, results[2].numpy()))

    def test_inf_minima(self):
        extream_point = np.array([-1, 2]).astype('float32')

        def func(x):
            # df = 3(x - 1.01)(x - 0.99)
            # f = x^3 - 3x^2 + 3*1.01*0.99x
            return x * x * x / 3.0 - (
                extream_point[0] + extream_point[1]
            ) * x * x / 2 + extream_point[0] * extream_point[1] * x

        x0 = np.array([-1.7]).astype('float32')
        results = test_static_graph(func, x0)
        self.assertFalse(results[0][0])

    def test_multi_minima(self):
        def func(x):
            # df = 12(x + 1.1)(x - 0.2)(x - 0.8)
            # f = 3*x^4+0.4*x^3-5.46*x^2+2.112*x
            # minimum = -1.1 or 0.8. 
            # All these minima may be reached from appropriate starting points.
            return 3 * x**4 + 0.4 * x**3 - 5.64 * x**2 + 2.112 * x

        x0 = np.array([0.82], dtype='float64')

        results = test_static_graph(func, x0, dtype='float64')
        self.assertTrue(np.allclose(0.8, results[2]))

121
    def func_rosenbrock(self):
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        # The Rosenbrock function is a standard optimization test case.
        a = np.random.random(size=[1]).astype('float32')
        minimum = [a.item(), (a**2).item()]
        b = np.random.random(size=[1]).astype('float32')

        def func(position):
            # f(x, y) = (a - x)^2 + b (y - x^2)^2
            # minimum = (a, a^2)
            x, y = position[0], position[1]
            c = (a - x)**2 + b * (y - x**2)**2
            # the return cant be np array[1], or in jacobin will cause flat error
            return c[0]

        x0 = np.random.random(size=[2]).astype('float32')

        results = test_dynamic_graph(func, x0)
        self.assertTrue(np.allclose(minimum, results[2]))

140 141 142 143 144
    def test_rosenbrock(self):
        with _test_eager_guard():
            self.func_rosenbrock()
        self.func_rosenbrock()

145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def test_exception(self):
        def func(x):
            return paddle.dot(x, x)

        x0 = np.random.random(size=[2]).astype('float32')
        H0 = np.array([[2.0, 0.0], [0.0, 0.9]]).astype('float32')

        # test initial_inverse_hessian_estimate is good
        results = test_static_graph_H0(func, x0, H0, dtype='float32')
        self.assertTrue(np.allclose([0., 0.], results[2]))
        self.assertTrue(results[0][0])

        # test initial_inverse_hessian_estimate is bad
        H1 = np.array([[1.0, 2.0], [2.0, 1.0]]).astype('float32')
        self.assertRaises(ValueError, test_dynamic_graph, func, x0, H0=H1)

        # test line_search_fn is bad
        self.assertRaises(
            NotImplementedError,
            test_static_graph,
            func,
            x0,
            line_search_fn='other')


if __name__ == '__main__':
    unittest.main()