multinomial_kernel.cu 10.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_WITH_HIP
// To-do(qili93): fix this after issue resolved
// https://github.com/ROCmSoftwarePlatform/rocPRIM/issues/202

#include "paddle/phi/kernels/multinomial_kernel.h"

21 22 23 24 25 26 27 28
#ifdef __NVCC__
#include "cub/cub.cuh"
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

29
#include "paddle/phi/backends/gpu/gpu_context.h"
30 31
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/ddim.h"
32
#include "paddle/phi/core/kernel_registry.h"
33 34 35
#include "paddle/phi/kernels/arg_min_max_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/distribution_helper.h"
36
#include "paddle/phi/kernels/funcs/eigen/common.h"
37 38
#include "paddle/phi/kernels/funcs/for_range.h"
#include "paddle/phi/kernels/funcs/inclusive_scan.h"
39
#include "paddle/phi/kernels/funcs/multinomial_functor.h"
40 41
#include "paddle/phi/kernels/top_k_kernel.h"

42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
namespace phi {

template <typename T>
__global__ void NormalizeProbability(T* norm_probs,
                                     const T* in_data,
                                     T* sum_rows,
                                     int64_t num_distributions,
                                     int64_t num_categories) {
  int id = threadIdx.x + blockIdx.x * blockDim.x +
           blockIdx.y * gridDim.x * blockDim.x;
  if (id < num_distributions * num_categories) {
    PADDLE_ENFORCE(
        in_data[id] >= 0.0,
        "The input of multinomial distribution should be >= 0, but got %f.",
        in_data[id]);
    int64_t row_id = id / num_categories;
    PADDLE_ENFORCE(sum_rows[row_id] > 0.0,
                   "The sum of one multinomial distribution probability should "
                   "be > 0, but got %f.",
                   sum_rows[row_id]);
    norm_probs[id] = in_data[id] / sum_rows[row_id];
  }
}

template <typename T>
67
__device__ int binarySearchFunctor(T* cumulative_probs_data,
68 69 70 71 72 73 74 75 76
                                   T* norm_probs_data,
                                   int num_categories,
                                   T rng_number) {
  int left = 0;
  int right = num_categories;

  while (right - left > 0) {
    int mid = left + (right - left) / 2;

77
    T temp_prob = cumulative_probs_data[mid];
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
    if (temp_prob < rng_number) {
      left = mid + 1;
    } else {
      right = mid;
    }
  }

  if (left == num_categories) {
    left = num_categories - 1;
  }

  while (left >= 1 && norm_probs_data[left] == 0) left--;

  return left;
}

template <typename T>
__global__ void sampleMultinomialWithReplacement(
    const int64_t num_samples,
    int64_t* out_data,
    const int64_t num_distributions,
    const int64_t num_categories,
100 101 102
    T* cumulative_probs_data,
    T* norm_probs_data,
    uint64_t seed,
103
    uint64_t offset) {
104
  // use binary search to get the selected category sample id.
105
  // let cumulative_probs_data[id-1] < rng_number < cumulative_probs_data[id].
106 107
  size_t idx = gridDim.x * blockDim.x * blockIdx.y + blockDim.x * blockIdx.x +
               threadIdx.x;
108

109 110
  curandStatePhilox4_32_10_t state;
  curand_init(seed, idx, offset, &state);
111

112 113 114
  int sample = blockIdx.x * blockDim.x + threadIdx.x;
  for (int dist = blockIdx.y; dist < num_distributions; dist += gridDim.y) {
    if (sample < num_samples) {
115
      T rng_number = static_cast<T>(curand_uniform4(&state).x);
116 117 118 119 120 121
      // Find the bucket that a uniform random number lies in
      int selected_category =
          binarySearchFunctor<T>(cumulative_probs_data + dist * num_categories,
                                 norm_probs_data + dist * num_categories,
                                 num_categories,
                                 rng_number);
122

123 124
      out_data[sample + dist * num_samples] = selected_category;
    }
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  }
}

template <typename T, typename Context>
void MultinomialKernel(const Context& dev_ctx,
                       const DenseTensor& x,
                       int num_samples,
                       bool replacement,
                       DenseTensor* out) {
  auto* in_data = x.data<T>();
  int64_t* out_data = dev_ctx.template Alloc<int64_t>(out);

  auto in_dims = x.dims();
  int64_t in_rank = in_dims.size();
  const int64_t num_categories = in_dims[in_rank - 1];
  const int64_t num_distributions = in_rank > 1 ? in_dims[in_rank - 2] : 1;

  // If replacement is False, it's not a replaceable sample. Every category
143
  // can be used only once.
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  if (!replacement) {
    int64_t in_data_numel = x.numel();
    int64_t out_data_numel = out->numel();

    T* cpu_in_data = new T[in_data_numel];
    int64_t* cpu_out_data = new int64_t[out_data_numel];

#ifdef PADDLE_WITH_HIP
    hipMemcpy(
        cpu_in_data, in_data, in_data_numel * sizeof(T), hipMemcpyDeviceToHost);
#else
    cudaMemcpy(cpu_in_data,
               in_data,
               in_data_numel * sizeof(T),
               cudaMemcpyDeviceToHost);
#endif
160 161 162 163 164 165 166 167 168 169 170 171
    for (size_t i = 0; i < num_distributions; ++i) {
      int zero_num = 0;
      for (size_t j = 0; j < num_categories; ++j) {
        T weight = cpu_in_data[i * num_distributions + j];
        PADDLE_ENFORCE_GE(
            weight,
            0,
            errors::InvalidArgument(
                "Each element of multinomial'input must >= 0, but got %f.",
                weight));
        if (weight == static_cast<T>(0)) {
          zero_num++;
172 173
        }
      }
174 175 176 177 178 179 180
      int valid_samples = num_categories - zero_num;
      PADDLE_ENFORCE_LE(
          num_samples,
          valid_samples,
          errors::InvalidArgument("When replacement=False, 'num_samples' "
                                  "must less than or eaqual to the number of "
                                  "positive item of input"));
181
    }
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
    // Refer to [gumbel softmax algorithm]
    DenseTensor rand = EmptyLike<T, Context>(dev_ctx, x);
    T* rand_data = rand.data<T>();
    funcs::uniform_distribution<T> dist;
    funcs::exponential_transform<T> trans(1.0);
    funcs::distribution_and_transform<T>(dev_ctx, &rand, dist, trans);

    funcs::ForRange<Context> for_range(dev_ctx, x.numel());
    for_range([rand_data, in_data] __device__(size_t idx) {
      rand_data[idx] = in_data[idx] / rand_data[idx];
    });

    if (num_samples == 1) {
      ArgMaxKernel<T, Context>(
          dev_ctx, rand, -1, true, false, 3 /*proto::VarType::INT64*/, out);
    } else {
      std::vector<int64_t> out_dim_vec = vectorize<int64_t>(out->dims());
      DenseTensor value = Empty<T, Context>(dev_ctx, IntArray(out_dim_vec));
      TopkKernel<T, Context>(
          dev_ctx, rand, Scalar(num_samples), -1, true, true, &value, out);
    }
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    return;
  }

  // Sum of input may not be 1. To get probability in range [0, 1], calculate
  // sum of each row of input, and then use the sum to normalize the input.
  // sum_row_data: sum of each row
  DenseTensor sum_rows_tensor;
  sum_rows_tensor.Resize({num_distributions});
  auto* sum_rows_data = dev_ctx.template Alloc<T>(&sum_rows_tensor);

  auto& place = *dev_ctx.eigen_device();

  if (num_distributions == 1) {
    auto eigen_input = EigenVector<T>::Flatten(x);
    auto eigen_sum_rows = EigenVector<T>::Flatten(sum_rows_tensor);
    eigen_sum_rows.device(place) =
        eigen_input.sum(Eigen::DSizes<int, 1>(1))
            .eval()
            .reshape(Eigen::DSizes<int, 1>(sum_rows_tensor.dims()[0]));
  } else {
    auto eigen_input = EigenMatrix<T>::From(x);
    auto eigen_sum_rows = EigenVector<T>::Flatten(sum_rows_tensor);
    eigen_sum_rows.device(place) = eigen_input.sum(Eigen::DSizes<int, 1>(1));
  }

  // Normalize row of each distribution to get the probability in range [0,
  // 1].
  // norm_probs_data: probability of the distribution
  DenseTensor norm_probs_tensor;
  norm_probs_tensor.Resize({num_distributions, num_categories});
  auto* norm_probs_data = dev_ctx.template Alloc<T>(&norm_probs_tensor);

  // number of threads in a block is min(num_categories, 512)
237 238
  int block_size = num_categories < 512 ? num_categories : 512;
  dim3 block_norm(block_size);
239 240 241 242 243 244 245 246 247
  dim3 grid_norm((num_distributions * num_categories - 1) / block_norm.x + 1);
  NormalizeProbability<T><<<grid_norm, block_norm, 0, dev_ctx.stream()>>>(
      norm_probs_data,
      in_data,
      sum_rows_data,
      num_distributions,
      num_categories);

  // Get cumulative probability of each distribution. It's the same function
248
  // of ``cumsum`` op.
249 250
  DenseTensor cumulative_probs_tensor;
  cumulative_probs_tensor.Resize({num_distributions, num_categories});
251 252 253
  auto* cumulative_probs_data =
      dev_ctx.template Alloc<T>(&cumulative_probs_tensor);

254 255 256 257 258 259 260 261 262 263 264 265
  // 'phi::funcs::InclusiveScan' has higher accuracy than
  // 'thrust::inclusive_scan'
  funcs::InclusiveScan<T, std::plus<T>>(
      /*in*/ norm_probs_data,
      /*out*/ cumulative_probs_data,
      /*outer_dim*/ static_cast<size_t>(num_distributions),
      /*mid_dim*/ static_cast<size_t>(num_categories),
      /*inner_dim*/ static_cast<size_t>(1),
      /*init*/ static_cast<T>(0),
      std::plus<T>(),
      /*reverse=*/false,
      dev_ctx);
266 267

  // Sample the multinomial distributions.
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
  dim3 block(128);
  int64_t device_id = dev_ctx.GetPlace().GetDeviceId();
  const auto& prop = phi::backends::gpu::GetDeviceProperties(device_id);
  int grid_y = std::min<int64_t>(num_distributions, prop.maxGridSize[1]);
  dim3 grid((num_samples - 1) / block.x + 1, grid_y);

  auto gen_cuda = dev_ctx.GetGenerator();
  size_t curand4_loop_times =
      (num_distributions + 4 * grid_y - 1) / (4 * grid_y);
  // 'increment' shoulde be multiple of 4
  uint64_t increment = curand4_loop_times * 4;
  auto seed_offset = gen_cuda->IncrementOffset(increment);

  sampleMultinomialWithReplacement<T><<<grid, block, 0, dev_ctx.stream()>>>(
      num_samples,
      out_data,
      num_distributions,
      num_categories,
      cumulative_probs_data,
      norm_probs_data,
      seed_offset.first,
289
      seed_offset.second);
290 291 292 293 294 295 296 297 298 299 300 301
}

}  // namespace phi

PD_REGISTER_KERNEL(multinomial,  // cuda_only
                   GPU,
                   ALL_LAYOUT,
                   phi::MultinomialKernel,
                   float,
                   double) {}

#endif