conv_grad_kernel.cu 25.5 KB
Newer Older
H
hong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/conv_grad_kernel.h"

#include "paddle/phi/core/dense_tensor.h"

#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"

#include "paddle/fluid/framework/eigen.h"
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/operators/conv_miopen_helper.h"
#else
#include "paddle/fluid/operators/conv_cudnn_helper.h"
#endif

#include "paddle/fluid/platform/cudnn_workspace_helper.h"
#include "paddle/fluid/platform/float16.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/phi/kernels/funcs/padding.h"

#include "paddle/phi/kernels/cpu/conv_util.h"
#include "paddle/phi/kernels/funcs/batch_norm_utils.h"

#include "paddle/phi/kernels/impl/conv_cudnn_impl.h"

#include "paddle/phi/common/bfloat16.h"
#include "paddle/phi/common/float16.h"

namespace phi {

template <typename T, typename Context>
void ConvCudnnGradKernel(const Context& ctx,
                         const DenseTensor& input,
                         const DenseTensor& filter,
H
hong 已提交
48
                         const DenseTensor& output_grad,
H
hong 已提交
49 50 51 52 53 54 55 56 57 58 59 60
                         const std::vector<int>& strides_t,
                         const std::vector<int>& paddings_t,
                         const std::string& padding_algorithm,
                         int groups,
                         const std::vector<int>& dilations_t,
                         const std::string& data_format,
                         bool use_addto,
                         int workspace_size_MB,
                         bool exhaustive_search_t,
                         DenseTensor* input_grad,
                         DenseTensor* filter_grad) {
  if (input_grad) {
H
hong 已提交
61
    ctx.template Alloc<T>(input_grad);
H
hong 已提交
62 63
  }
  if (filter_grad) {
H
hong 已提交
64
    ctx.template Alloc<T>(filter_grad);
H
hong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  }

  std::vector<int> dilations = dilations_t;
  std::vector<int> strides = strides_t;
  std::vector<int> paddings = paddings_t;

  bool exhaustive_search = FLAGS_cudnn_exhaustive_search || exhaustive_search_t;
  bool deterministic = FLAGS_cudnn_deterministic;
  auto exhaustive_deterministic = exhaustive_search && deterministic;
  PADDLE_ENFORCE_EQ(exhaustive_deterministic,
                    false,
                    phi::errors::InvalidArgument(
                        "Cann't set exhaustive_search True and "
                        "FLAGS_cudnn_deterministic True at same time."));

  const bool channel_last = (data_format == "NHWC" || data_format == "NDHWC");

  auto dtype = paddle::platform::CudnnDataType<T>::type;

#ifdef PADDLE_WITH_HIP
  // HIP MIOPEN ONLY SUPPORT NCHW format
  auto compute_format = paddle::platform::DataLayout::kNCHW;
#else
  const bool compute_in_nhwc = dtype == CUDNN_DATA_HALF && IsVoltaOrLater(ctx);
  auto compute_format = compute_in_nhwc && channel_last
                            ? paddle::platform::DataLayout::kNHWC
                            : paddle::platform::DataLayout::kNCHW;
#endif
  VLOG(3) << "Compute ConvGradOp with cuDNN:"
          << " data_format=" << data_format << " compute_format="
          << (compute_format == paddle::platform::DataLayout::kNHWC ? "NHWC"
                                                                    : "NCHW");

  // transform Tensor
  DenseTensor transformed_input_channel(input.type());
  DenseTensor transformed_output_grad_channel(output_grad.type());
  DenseTensor transformed_input_grad_channel(input.type());
  DenseTensor transformed_filter_channel(filter.type());
  DenseTensor transformed_filter_grad_channel(filter.type());

  if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
    VLOG(3) << "Transform input, output_grad, input_grad and tensor from "
               "NHWC to NCHW.";
    ResizeToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);
    TransToChannelFirst<Context, T>(ctx, &input, &transformed_input_channel);

    ResizeToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);
    TransToChannelFirst<Context, T>(
        ctx, &output_grad, &transformed_output_grad_channel);

    if (input_grad) {
      ResizeToChannelFirst<Context, T>(
          ctx, input_grad, &transformed_input_grad_channel);
      // NOTE(zhiqiu): If inplace_addto strategy is enabled, we need to copy
      // the data of input_grad to transformed_input_grad_channel.
      if (use_addto) {
        TransToChannelFirst<Context, T>(
            ctx, input_grad, &transformed_input_grad_channel);
      }
    }
  } else {
    transformed_input_channel.ShareDataWith(input);
    transformed_output_grad_channel.ShareDataWith(output_grad);
    if (input_grad) {
      transformed_input_grad_channel.ShareDataWith(*input_grad);
    }
  }

  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    VLOG(3) << "Transform filter and filter_grad tensor from NCHW to NHWC.";
    ResizeToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);
    TransToChannelLast<Context, T>(ctx, &filter, &transformed_filter_channel);

    if (filter_grad) {
      ResizeToChannelLast<Context, T>(
          ctx, filter_grad, &transformed_filter_grad_channel);
    }
  } else {
    transformed_filter_channel.ShareDataWith(filter);
    if (filter_grad) {
      transformed_filter_grad_channel.ShareDataWith(*filter_grad);
    }
  }

  //  update paddings
  auto in_dims = transformed_input_channel.dims();
  auto filter_dims = transformed_filter_channel.dims();
  DDim in_data_dims;
  DDim filter_data_dims;
  if (compute_format == paddle::platform::DataLayout::kNCHW) {
    in_data_dims = slice_ddim(in_dims, 2, in_dims.size());
    filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size());
  } else {
    in_data_dims = slice_ddim(in_dims, 1, in_dims.size() - 1);
    filter_data_dims = slice_ddim(filter_dims, 1, filter_dims.size() - 1);
  }
  std::vector<int> ksize = vectorize<int>(filter_data_dims);
  UpdatePaddingAndDilation(
      &paddings, &dilations, padding_algorithm, in_data_dims, strides, ksize);

  // cuDNN only supports padding the same amount on every dimension.
  // So we create a new padded input tensor.
  int data_dim = strides.size();  // 2d or 3d
  bool is_sys_pad = funcs::IsSymmetricPadding(paddings, data_dim);
  Tensor transformed_input(input.type());
  Tensor transformed_input_grad(input.type());
  std::vector<int> padding_common(data_dim, 0);
  std::vector<int> input_pad(transformed_input_channel.dims().size() * 2, 0);

  if (!is_sys_pad) {
    // get pad
    std::vector<int> padding_diff(data_dim);
    std::vector<int> new_input_shape_vec(data_dim + 2);
    new_input_shape_vec[0] = transformed_input_channel.dims()[0];
    if (compute_format == paddle::platform::DataLayout::kNCHW) {
      new_input_shape_vec[1] = transformed_input_channel.dims()[1];
    } else {
      new_input_shape_vec[data_dim + 1] =
          transformed_input_channel.dims()[data_dim + 1];
    }

    for (size_t i = 0; i < data_dim; ++i) {
      padding_diff[i] = std::abs(paddings[2 * i] - paddings[2 * i + 1]);
      padding_common[i] = std::min(paddings[2 * i], paddings[2 * i + 1]);
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        new_input_shape_vec[i + 2] =
            transformed_input_channel.dims()[i + 2] + padding_diff[i];
      } else {
        new_input_shape_vec[i + 1] =
            transformed_input_channel.dims()[i + 1] + padding_diff[i];
      }
      if (compute_format == paddle::platform::DataLayout::kNCHW) {
        input_pad[2 * i + 4] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 4 + 1] = paddings[2 * i + 1] - padding_common[i];
      } else {
        input_pad[2 * i + 2] = paddings[2 * i] - padding_common[i];
        input_pad[2 * i + 2 + 1] = paddings[2 * i + 1] - padding_common[i];
      }
    }
    DDim new_input_shape(make_ddim(new_input_shape_vec));
    transformed_input.Resize(new_input_shape);
H
hong 已提交
207
    ctx.template Alloc<T>(&transformed_input);
H
hong 已提交
208 209 210 211

    transformed_input_grad.Resize(new_input_shape);

    if (input_grad) {
H
hong 已提交
212
      ctx.template Alloc<T>(&transformed_input_grad);
H
hong 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    }
    // pad for input
    const int rank = transformed_input_channel.dims().size();
    T pad_value(0.0);
    switch (rank) {
      case 4: {
        funcs::PadFunction<Context, T, 4>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      case 5: {
        funcs::PadFunction<Context, T, 5>(ctx,
                                          input_pad,
                                          transformed_input_channel,
                                          pad_value,
                                          &transformed_input);
      } break;
      default:
        PADDLE_THROW(phi::errors::InvalidArgument(
            "ConvOp only support tensors with 4 or 5 dimensions."));
    }
  } else {
    transformed_input.ShareDataWith(transformed_input_channel);
    if (input_grad) {
      transformed_input_grad.ShareDataWith(transformed_input_grad_channel);
    }
    if (paddings.size() == data_dim) {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[i];
      }
    } else {
      for (size_t i = 0; i < data_dim; ++i) {
        padding_common[i] = paddings[2 * i];
      }
    }
  }

  const T* input_data = transformed_input.data<T>();
  const T* output_grad_data = transformed_output_grad_channel.data<T>();
  const T* filter_data = transformed_filter_channel.data<T>();
  T* filter_grad_data = nullptr;
  T* input_grad_data = nullptr;
  T* transformed_input_grad_data = nullptr;

  paddle::operators::ConvArgs args1{&transformed_input_grad,
                                    &transformed_filter_channel,
                                    &transformed_output_grad_channel,
                                    strides,
                                    padding_common,
                                    dilations,
                                    dtype};
  paddle::operators::ConvArgs args2{&transformed_input,
                                    &transformed_filter_grad_channel,
                                    &transformed_output_grad_channel,
                                    strides,
                                    padding_common,
                                    dilations,
                                    dtype};

  auto handle = ctx.cudnn_handle();
  // TODO(phlrain): replace paddle::platform::DataLaytout to phi::DataLayout
  paddle::platform::DataLayout layout =
      compute_format == paddle::platform::DataLayout::kNHWC
          ? paddle::platform::DataLayout::kNHWC
          : paddle::platform::DataLayout::kNCHW;
  if (transformed_input.dims().size() == 5) {
    layout = compute_format == paddle::platform::DataLayout::kNHWC
                 ? paddle::platform::DataLayout::kNDHWC
                 : paddle::platform::DataLayout::kNCDHW;
  }
  auto layout_tensor = paddle::platform::GetCudnnTensorFormat(layout);
  auto workspace_handle = ctx.cudnn_workspace_handle();

  int i_n, i_c, i_d, i_h, i_w;
  int o_n, o_c, o_d, o_h, o_w;
  if (compute_format == paddle::platform::DataLayout::kNHWC) {
    paddle::operators::GetNCDHW(transformed_input.dims(),
                                paddle::platform::DataLayout::kNHWC,
                                &i_n,
                                &i_c,
                                &i_d,
                                &i_h,
                                &i_w);
    paddle::operators::GetNCDHW(transformed_output_grad_channel.dims(),
                                paddle::platform::DataLayout::kNHWC,
                                &o_n,
                                &o_c,
                                &o_d,
                                &o_h,
                                &o_w);
  } else {
    paddle::operators::GetNCDHW(transformed_input.dims(),
                                paddle::platform::DataLayout::kNCHW,
                                &i_n,
                                &i_c,
                                &i_d,
                                &i_h,
                                &i_w);
    paddle::operators::GetNCDHW(transformed_output_grad_channel.dims(),
                                paddle::platform::DataLayout::kNCHW,
                                &o_n,
                                &o_c,
                                &o_d,
                                &o_h,
                                &o_w);
  }

  int group_offset_in = i_c / groups * i_h * i_w * i_d;
  int group_offset_out = o_c / groups * o_h * o_w * o_d;
  int group_offset_filter = transformed_filter_channel.numel() / groups;
325

H
hong 已提交
326 327
// ------------------- cudnn backward algorithm ---------------------
#ifdef PADDLE_WITH_HIP
328 329 330
  paddle::operators::SearchResult<miopenConvBwdDataAlgorithm_t> bwd_result;
  paddle::operators::SearchResult<miopenConvBwdWeightsAlgorithm_t>
      filter_result;
H
hong 已提交
331
#else
332 333 334
  paddle::operators::SearchResult<cudnnConvolutionBwdDataAlgo_t> bwd_result;
  paddle::operators::SearchResult<cudnnConvolutionBwdFilterAlgo_t>
      filter_result;
H
hong 已提交
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
#endif
  // input data workspace_size
  size_t workspace_size_d = 0;
  // weight workspace_size
  size_t workspace_size_w = 0;
  int iwo_groups = groups;
  int c_groups = 1;

#if defined(PADDLE_WITH_HIP) || CUDNN_VERSION_MIN(7, 0, 1)
  iwo_groups = 1;
  c_groups = groups;
  groups = 1;
#endif

  if (input_grad) {
    // ------------------- cudnn descriptors ---------------------
    input_grad_data = input_grad->data<T>();
    transformed_input_grad_data = transformed_input_grad.data<T>();

    args1.handle = handle;
    args1.idesc.set(transformed_input_grad, layout_tensor);
    args1.wdesc.set(transformed_filter_channel, layout_tensor, iwo_groups);
    args1.odesc.set(transformed_output_grad_channel, layout_tensor);
    args1.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);

#ifdef PADDLE_WITH_HIP
    using search1 =
        paddle::operators::SearchAlgorithm<miopenConvBwdDataAlgorithm_t>;
    workspace_size_d =
        std::max(workspace_size_d, search1::GetWorkspaceSize(args1));
370
    bwd_result.algo = search1::Find<T>(
H
hong 已提交
371 372 373 374
        args1, exhaustive_search, deterministic, workspace_size_d, ctx);
#else
    using search1 =
        paddle::operators::SearchAlgorithm<cudnnConvolutionBwdDataAlgoPerf_t>;
375 376 377
    bwd_result = search1::Find<T>(args1, exhaustive_search, deterministic, ctx);
    workspace_size_d = std::max(
        workspace_size_d, search1::GetWorkspaceSize(args1, bwd_result.algo));
H
hong 已提交
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
#endif
  }

  if (filter_grad) {
    // ------------------- cudnn descriptors ---------------------
    filter_grad_data = transformed_filter_grad_channel.data<T>();
    args2.handle = handle;
    args2.idesc.set(transformed_input, layout_tensor);
    args2.wdesc.set(transformed_filter_grad_channel, layout_tensor, iwo_groups);
    args2.odesc.set(transformed_output_grad_channel, layout_tensor);
    args2.cdesc.set(dtype,
                    padding_common,
                    strides,
                    dilations,
                    paddle::platform::AllowTF32Cudnn(),
                    c_groups);
#ifdef PADDLE_WITH_HIP
    using search2 =
        paddle::operators::SearchAlgorithm<miopenConvBwdWeightsAlgorithm_t>;
    workspace_size_w =
        std::max(workspace_size_w, search2::GetWorkspaceSize(args2));
399
    filter_result.algo = search2::Find<T>(
H
hong 已提交
400 401 402 403
        args2, exhaustive_search, deterministic, workspace_size_w, ctx);
#else
    using search2 =
        paddle::operators::SearchAlgorithm<cudnnConvolutionBwdFilterAlgoPerf_t>;
404
    filter_result =
H
hong 已提交
405
        search2::Find<T>(args2, exhaustive_search, deterministic, ctx);
406 407 408 409
    VLOG(3) << "filter algo: " << filter_result.algo << ", time "
            << filter_result.time;
    workspace_size_w = std::max(
        workspace_size_w, search2::GetWorkspaceSize(args2, filter_result.algo));
H
hong 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
#endif
  }

  // ------------------- cudnn conv backward data ---------------------
  paddle::operators::ScalingParamType<T> alpha = 1.0f;
#ifdef PADDLE_WITH_HIP
  // MIOPEN ONLY support beta to be 0.0f
  paddle::operators::ScalingParamType<T> beta = 0.0f;
#else
  paddle::operators::ScalingParamType<T> beta = use_addto ? 1.0f : 0.0f;

#endif
  VLOG(4) << "Conv_grad: use_addto = " << use_addto;

  if (input_grad) {
// When beta is 0, it is unnecessary to reset input_grad.
// When beta is 1, the output cannot be reset since addt strategy used.
#ifdef PADDLE_WITH_HIP
    if (use_addto) {
      DenseTensor temp_tensor(transformed_input_grad.type());
      temp_tensor.Resize(transformed_input_grad.dims());
H
hong 已提交
431
      T* temp_tensor_data = ctx.template Alloc<T>(&temp_tensor);
H
hong 已提交
432 433 434 435 436 437 438 439 440 441 442
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
443
                    bwd_result.algo,
H
hong 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
                    &beta,
                    args1.idesc.desc(),
                    temp_tensor_data,
                    cudnn_workspace_ptr,
                    workspace_size_d));
          },
          workspace_size_d);
      PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenOpTensor(
          handle,
          miopenTensorOpAdd,
          &alpha,
          args1.idesc.desc(),
          transformed_input_grad_data,
          &alpha,
          args1.idesc.desc(),
          temp_tensor_data,
          &beta,
          args1.idesc.desc(),
          transformed_input_grad_data));
    } else {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::miopenConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.odesc.desc(),
                    output_grad_data,
                    args1.wdesc.desc(),
                    filter_data,
                    args1.cdesc.desc(),
475
                    bwd_result.algo,
H
hong 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
                    &beta,
                    args1.idesc.desc(),
                    transformed_input_grad_data,
                    cudnn_workspace_ptr,
                    workspace_size_d));
          },
          workspace_size_d);
    }

#else
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::cudnnConvolutionBackwardData(
                    handle,
                    &alpha,
                    args1.wdesc.desc(),
                    filter_data + i * group_offset_filter,
                    args1.odesc.desc(),
                    output_grad_data + i * group_offset_out,
                    args1.cdesc.desc(),
498
                    bwd_result.algo,
H
hong 已提交
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                    cudnn_workspace_ptr,
                    workspace_size_d,
                    &beta,
                    args1.idesc.desc(),
                    transformed_input_grad_data + i * group_offset_in));
          },
          workspace_size_d);
    }
#endif
    if (!is_sys_pad) {
      std::vector<int> starts(transformed_input_channel.dims().size(), 0);
      std::vector<int> axes(transformed_input_channel.dims().size(), 0);

      for (size_t i = 0; i < transformed_input_channel.dims().size(); ++i) {
        starts[i] = input_pad[2 * i];
        axes[i] = i;
      }

H
hong 已提交
517
      ctx.template Alloc<T>(&transformed_input_grad_channel);
H
hong 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
      if (transformed_input_channel.dims().size() == 4) {
        paddle::operators::RemovePaddingSlice<Context, T, 4>(
            ctx,
            &transformed_input_grad,
            &transformed_input_grad_channel,
            starts,
            axes);
      } else {
        paddle::operators::RemovePaddingSlice<Context, T, 5>(
            ctx,
            &transformed_input_grad,
            &transformed_input_grad_channel,
            starts,
            axes);
      }
    }

    if (channel_last && compute_format == paddle::platform::DataLayout::kNCHW) {
      TransToChannelLast<Context, T>(
          ctx, &transformed_input_grad_channel, input_grad);
    }
  }

  // filter_grad do not use inplace addto.
  paddle::operators::ScalingParamType<T> beta_filter = 0.0f;
  // ------------------- cudnn conv backward filter ---------------------
  if (filter_grad) {
// Because beta is zero, it is unnecessary to reset filter_grad.
#ifdef PADDLE_WITH_HIP
    workspace_handle.RunFunc(
        [&](void* cudnn_workspace_ptr) {
          PADDLE_ENFORCE_GPU_SUCCESS(
              paddle::platform::dynload::miopenConvolutionBackwardWeights(
                  handle,
                  &alpha,
                  args2.odesc.desc(),
                  output_grad_data,
                  args2.idesc.desc(),
                  input_data,
                  args2.cdesc.desc(),
558
                  filter_result.algo,
H
hong 已提交
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
                  &beta,
                  args2.wdesc.desc(),
                  filter_grad_data,
                  cudnn_workspace_ptr,
                  workspace_size_w));
        },
        workspace_size_w);
#else
    for (int i = 0; i < groups; i++) {
      workspace_handle.RunFunc(
          [&](void* cudnn_workspace_ptr) {
            PADDLE_ENFORCE_GPU_SUCCESS(
                paddle::platform::dynload::cudnnConvolutionBackwardFilter(
                    handle,
                    &alpha,
                    args2.idesc.desc(),
                    input_data + i * group_offset_in,
                    args2.odesc.desc(),
                    output_grad_data + i * group_offset_out,
                    args2.cdesc.desc(),
579
                    filter_result.algo,
H
hong 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
                    cudnn_workspace_ptr,
                    workspace_size_w,
                    &beta_filter,
                    args2.wdesc.desc(),
                    filter_grad_data + i * group_offset_filter));
          },
          workspace_size_w);
    }
#endif

    if (compute_format == paddle::platform::DataLayout::kNHWC) {
      TransToChannelFirst<Context, T>(
          ctx, &transformed_filter_grad_channel, filter_grad);
    }
  }
}

template <typename T, typename Context>
void Conv3DCudnnGradKernel(const Context& dev_ctx,
                           const DenseTensor& input,
                           const DenseTensor& filter,
H
hong 已提交
601
                           const DenseTensor& out_grad,
H
hong 已提交
602 603 604 605 606 607 608 609 610 611 612 613 614 615
                           const std::vector<int>& strides,
                           const std::vector<int>& paddings,
                           const std::string& paddding_algorithm,
                           int groups,
                           const std::vector<int>& dilations,
                           const std::string& data_format,
                           bool use_addto,
                           int workspace_size_MB,
                           bool exhaustive_search,
                           DenseTensor* input_grad,
                           DenseTensor* filter_grad) {
  ConvCudnnGradKernel<T>(dev_ctx,
                         input,
                         filter,
H
hong 已提交
616
                         out_grad,
H
hong 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
                         strides,
                         paddings,
                         paddding_algorithm,
                         groups,
                         dilations,
                         data_format,
                         use_addto,
                         workspace_size_MB,
                         exhaustive_search,
                         input_grad,
                         filter_grad);
}

}  // namespace phi

#ifdef PADDLE_WITH_HIP
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   phi::dtype::float16) {}
#else
#if CUDNN_VERSION_MIN(8, 1, 0)
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16,
                   phi::dtype::bfloat16) {}
#else
PD_REGISTER_KERNEL(conv2d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::ConvCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

PD_REGISTER_KERNEL(conv3d_grad,
                   GPUDNN,
                   ALL_LAYOUT,
                   phi::Conv3DCudnnGradKernel,
                   float,
                   double,
                   phi::dtype::float16) {}

#endif

#endif