launch.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
paddle.distributed.launch is a module that spawns multiple distributed 
process on each training node for gpu training and cpu training.
Usage:
    In both of single node training or multiple node training, this module 
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
            fleetrun --ips="192.168.0.16,192.168.0.17" --node_ip=192.168.0.16 \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                --node_ip=192.168.0.17 \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
        fleetrun --server_num=1 --worker_num=4 your_training_py (arg1 arg2 and all others)
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and  4 workers.
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
                --workers="192.168.0.16:6172,192.168.0.17:6173,192.168.0.16:6174,192.168.0.17:6175" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
                --workers="192.168.0.16:6172,192.168.0.17:6173,192.168.0.16:6174,192.168.0.17:6175" \
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
import sys
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid

from paddle.fleet.launch_utils import *
import paddle.fleet.cloud_utils as cloud_utils


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')

    #Optional arguments for the launch helper
    parser.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
    parser.add_argument(
        "--gpus",
        type=str,
        default=None,
        help="It's for gpu training and the training process will run on the gpus,"
        "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
    )

    parser.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    parser.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    parser.add_argument(
        "--worker_num", type=int, default=2, help="number of workers")

    parser.add_argument(
        "--server_num", type=int, default=2, help="number of servers")

    parser.add_argument(
        "--log_dir",
        type=str,
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )
    #positional
    parser.add_argument(
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

    #rest from the training program
    parser.add_argument('training_script_args', nargs=REMAINDER)
    return parser.parse_args()


def get_cluster_from_args(args, gpus):
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

    # node_ip = args.node_ip
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips:{%s}" \
                % (node_ip, node_ips)
    node_rank = node_ips.index(node_ip)

    logger.debug("parsed from args:node_ips:{} node_ip:{} node_rank:{}".format(
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
        free_ports = find_free_ports(len(gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
            start_port = os.environ.get('FLAGS_START_PORT')

        free_ports = [x for x in range(start_port, start_port + len(gpus))]

    return get_cluster(node_ips, node_ip, free_ports, gpus)


def get_gpus(gpus):
    if gpus is None:
        gpus_num = fluid.core.get_cuda_device_count()
        gpus = [str(x) for x in range(0, gpus_num)]
    else:
        cuda_visible_devices = os.getenv("CUDA_VISIBLE_DEVICES")
        if cuda_visible_devices is None or cuda_visible_devices == "":
            gpus = [x.strip() for x in gpus.split(',')]
        else:
            # change gpus into relative values
            # e.g. CUDA_VISIBLE_DEVICES=4,5,6,7; args.gpus=4,5,6,7;
            # therefore gpus=0,1,2,3
            cuda_visible_devices_list = cuda_visible_devices.split(',')
            for x in gpus.split(','):
                assert x in cuda_visible_devices_list, "Can't find "\
                "your gpus %s in CUDA_VISIBLE_DEVICES[%s]."\
                % (x, cuda_visible_devices)
            gpus = [
                cuda_visible_devices_list.index(x.strip())
                for x in gpus.split(',')
            ]

    return gpus


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
    gpus = get_gpus(args.gpus)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} gpus:{}".format(
        trainers_num, gpus))

    cluster = None
    pod = None

    if cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, gpus)
        logger.info("get cluster from cloud:{}".format(cluster))
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, gpus)
        logger.info("get cluster from args:{}".format(cluster))

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir)

    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
            logger.info("Local procs complete, POD info:{}".format(pod))
            break

        time.sleep(3)


def launch_ps(args):
    worker_num = args.worker_num
    server_num = args.server_num
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
    default_env = os.environ.copy()
    current_env = copy.copy(default_env)
    current_env.pop("http_proxy", None)
    current_env.pop("https_proxy", None)
    procs = []
    cmds = []
    log_fns = []
    ports = range(start_port, start_port + server_num, 1)
    default_endpoints = ",".join(["127.0.0.1:" + str(x) for x in ports])
    user_endpoints = ""
    if args.servers == "":
        user_endpoints = default_endpoints
    else:
        user_endpoints = args.servers
    user_endpoints_ips = [x.split(":")[0] for x in user_endpoints.split(",")]
    user_endpoints_port = [x.split(":")[1] for x in user_endpoints.split(",")]
    for i in range(server_num):
        current_env.update({
            "PADDLE_PSERVERS_IP_PORT_LIST": user_endpoints,
            "PADDLE_PORT": user_endpoints_port[i],
            "TRAINING_ROLE": "PSERVER",
            "PADDLE_TRAINERS_NUM": str(worker_num),
            "POD_IP": user_endpoints_ips[i]
        })

        cmd = [sys.executable, "-u", args.training_script
               ] + args.training_script_args
        cmds.append(cmd)
        if args.log_dir is not None:
            os.system("mkdir -p {}".format(args.log_dir))
            fn = open("%s/serverlog.%d" % (args.log_dir, i), "w")
            log_fns.append(fn)
            proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
        else:
            proc = subprocess.Popen(cmd, env=current_env)
        procs.append(proc)

    for i in range(worker_num):
        current_env.update({
            "PADDLE_PSERVERS_IP_PORT_LIST": user_endpoints,
            "PADDLE_TRAINERS_NUM": str(worker_num),
            "TRAINING_ROLE": "TRAINER",
            "PADDLE_TRAINER_ID": str(i)
        })
        cmd = [sys.executable, "-u", args.training_script
               ] + args.training_script_args
        cmds.append(cmd)
        if args.log_dir is not None:
            os.system("mkdir -p {}".format(args.log_dir))
            fn = open("%s/workerlog.%d" % (args.log_dir, i), "w")
            log_fns.append(fn)
            proc = subprocess.Popen(cmd, env=current_env, stdout=fn, stderr=fn)
        else:
            proc = subprocess.Popen(cmd, env=current_env)
        procs.append(proc)

    # only wait worker to finish here
    for i, proc in enumerate(procs):
        if i < server_num:
            continue
        procs[i].wait()
        if len(log_fns) > 0:
            log_fns[i].close()

    print("all workers exit, going to finish parameter server", file=sys.stderr)
    for i in range(server_num):
        if len(log_fns) > 0:
            log_fns[i].close()
        procs[i].terminate()
    print("all parameter server are killed", file=sys.stderr)


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)
    ps_args = ['--worker_num', '--server_num', '--servers', '--workers']
    collective_args = ['--ips', '--gpus']
    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
    if len(has_ps_args) > 0 or fluid.core.get_cuda_device_count() == 0:
        logger.info("Run cpu parameter-sever mode.")
        launch_ps(args)
    elif len(has_collective_args) > 0:
        logger.info("Run gpu collective mode.")
        launch_collective(args)
    else:
        logger.warning(
            "Not found distinct args. Default use gpu collective mode")
        launch_collective(args)


if __name__ == "__main__":
    launch()