metric.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xujiaqi01 已提交
14 15 16 17 18 19
"""Fleet Metrics"""

import paddle.fluid as fluid
import math
import numpy as np
from paddle.fluid.framework import Variable
T
tangwei12 已提交
20
import paddle.distributed.fleet as fleet
X
xujiaqi01 已提交
21 22


T
tangwei12 已提交
23
def sum(input, scope=None, util=None):
X
xujiaqi01 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    """
    distributed sum in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): sum array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_add(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)
          
          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
46
          print("sum array: ", paddle.distributed.fleet.sum(res))
X
xujiaqi01 已提交
47 48 49
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
50 51
    if util is None:
        util = fleet.util
X
xujiaqi01 已提交
52 53 54 55 56 57
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
58
    output = util.all_reduce(input, "sum")
X
xujiaqi01 已提交
59 60 61 62
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
63
def max(input, scope=None, util=None):
X
xujiaqi01 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    """
    distributed max in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): max array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_max(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
86
          print("max array: ", paddle.distributed.fleet.max(res))
X
xujiaqi01 已提交
87 88 89
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
90 91
    if util is None:
        util = fleet.util
X
xujiaqi01 已提交
92 93 94 95 96 97
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
98
    output = util.all_reduce(input, "max")
X
xujiaqi01 已提交
99 100 101 102
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
103
def min(input, scope=None, util=None):
X
xujiaqi01 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    """
    distributed min in fleet

    Args:
        input(numpy.array|Variable|string): output of a layer
        scope(Scope): specific scope

    Returns:
        global_metric(numpy.array): min array

    Example:
        .. code-block:: python

          # in model.py
          input = fluid.layers.cast(some_input, dtype='float32')
          cnt = fluid.layers.reduce_sum(input)
          global_cnt = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp = fluid.layers.elementwise_min(cnt, global_cnt)
          fluid.layers.assign(tmp, global_cnt)

          # in train.py, after train or infer
          res = np.array(scope.find_var(global_cnt.name).get_tensor())
126
          print("min array: ", paddle.distributed.fleet.min(res))
X
xujiaqi01 已提交
127 128 129
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
130 131
    if util is None:
        util = fleet.util
X
xujiaqi01 已提交
132 133 134 135 136 137
    if isinstance(input, Variable):
        input = np.array(scope.find_var(input.name).get_tensor())
    elif isinstance(input, str):
        input = np.array(scope.find_var(input).get_tensor())
    old_shape = np.array(input.shape)
    output = np.copy(input) * 0
T
tangwei12 已提交
138
    output = util.all_reduce(input, "min")
X
xujiaqi01 已提交
139 140 141 142
    output = output.reshape(old_shape)
    return output


T
tangwei12 已提交
143
def auc(stat_pos, stat_neg, scope=None, util=None):
X
xujiaqi01 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
    """
    distributed auc in fleet

    Args:
        stat_pos(numpy.array|Variable|string): stat_pos in output of fluid.layers.auc
        stat_neg(numpy.array|Variable|string): stat_neg in output of fluid.layers.auc
        scope(Scope): specific scope

    Returns:
        auc_value(float): auc value

    Example:
        .. code-block:: python

          # in model.py
          similarity_norm = fluid.layers.sigmoid(fluid.layers.clip(output, min=-15.0, max=15.0))
          binary_predict = fluid.layers.concat(
              input=[fluid.layers.elementwise_sub(fluid.layers.ceil(similarity_norm), similarity_norm), similarity_norm], axis=1)
          self.auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] =
              fluid.layers.auc(input=binary_predict, label=label, curve='ROC', num_thresholds=4096)

          # in train.py, after train or infer
          pos = np.array(scope.find_var(stat_pos.name).get_tensor())
          neg = np.array(scope.find_var(stat_neg.name).get_tensor())
168
          print("auc: ", paddle.distributed.fleet.auc(pos, neg))
X
xujiaqi01 已提交
169 170 171
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
172 173 174
    if util is None:
        util = fleet.util

X
xujiaqi01 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188
    if isinstance(stat_pos, Variable):
        stat_pos = np.array(scope.find_var(stat_pos.name).get_tensor())
    elif isinstance(stat_pos, str):
        stat_pos = np.array(scope.find_var(stat_pos).get_tensor())
    if isinstance(stat_neg, Variable):
        stat_neg = np.array(scope.find_var(stat_neg.name).get_tensor())
    elif isinstance(stat_neg, str):
        stat_neg = np.array(scope.find_var(stat_neg).get_tensor())
    # auc pos bucket shape
    old_pos_shape = np.array(stat_pos.shape)
    # reshape to one dim
    stat_pos = stat_pos.reshape(-1)
    global_pos = np.copy(stat_pos) * 0
    # mpi allreduce
T
tangwei12 已提交
189
    global_pos = util.all_reduce(stat_pos, "sum")
X
xujiaqi01 已提交
190 191 192 193 194 195
    global_pos = global_pos.reshape(old_pos_shape)

    # auc neg bucket
    old_neg_shape = np.array(stat_neg.shape)
    stat_neg = stat_neg.reshape(-1)
    global_neg = np.copy(stat_neg) * 0
T
tangwei12 已提交
196
    global_neg = util.all_reduce(stat_neg, "sum")
X
xujiaqi01 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    global_neg = global_neg.reshape(old_neg_shape)

    # calculate auc
    num_bucket = len(global_pos[0])
    area = 0.0
    pos = 0.0
    neg = 0.0
    new_pos = 0.0
    new_neg = 0.0
    total_ins_num = 0
    for i in range(num_bucket):
        index = num_bucket - 1 - i
        new_pos = pos + global_pos[0][index]
        total_ins_num += global_pos[0][index]
        new_neg = neg + global_neg[0][index]
        total_ins_num += global_neg[0][index]
        area += (new_neg - neg) * (pos + new_pos) / 2
        pos = new_pos
        neg = new_neg

    auc_value = None
    if pos * neg == 0 or total_ins_num == 0:
        auc_value = 0.5
    else:
        auc_value = area / (pos * neg)

    return auc_value


T
tangwei12 已提交
226
def mae(abserr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    """
    distributed mae in fleet

    Args:
        abserr(numpy.array|Variable|string): abserr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        mae(float): mae value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(abserr.name).get_tensor())
246
          print("mae: ", paddle.distributed.fleet.mae(res, total_ins_num))
X
xujiaqi01 已提交
247 248 249
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
250 251 252
    if util is None:
        util = fleet.util

X
xujiaqi01 已提交
253 254 255 256
    if isinstance(abserr, Variable):
        abserr = np.array(scope.find_var(abserr.name).get_tensor())
    elif isinstance(abserr, str):
        abserr = np.array(scope.find_var(abserr).get_tensor())
T
tangwei12 已提交
257

X
xujiaqi01 已提交
258 259 260
    old_metric_shape = np.array(abserr.shape)
    abserr = abserr.reshape(-1)
    global_metric = np.copy(abserr) * 0
T
tangwei12 已提交
261 262

    global_metric = util.all_reduce(abserr, "sum")
X
xujiaqi01 已提交
263
    global_metric = global_metric.reshape(old_metric_shape)
T
tangwei12 已提交
264

X
xujiaqi01 已提交
265 266 267 268
    mae_value = global_metric[0] / total_ins_num
    return mae_value


T
tangwei12 已提交
269
def rmse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    """
    distributed rmse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        rmse(float): rmse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          res = np.array(scope.find_var(sqrerr.name).get_tensor())
289
          print("rmse: ", paddle.distributed.fleet.rmse(res, total_ins_num))
X
xujiaqi01 已提交
290 291 292
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
293 294 295
    if util is None:
        util = fleet.util

X
xujiaqi01 已提交
296 297 298 299 300 301 302
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
303 304

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
305
    global_metric = global_metric.reshape(old_metric_shape)
T
tangwei12 已提交
306

X
xujiaqi01 已提交
307 308 309 310
    rmse_value = math.sqrt(global_metric[0] / total_ins_num)
    return rmse_value


T
tangwei12 已提交
311
def mse(sqrerr, total_ins_num, scope=None, util=None):
X
xujiaqi01 已提交
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
    """
    distributed mse in fleet

    Args:
        sqrerr(numpy.array|Variable|string): sqrerr in output of fluid.contrib.layers.ctr_metric_bundle
        total_ins_num(int|float): total train/infer instance count
        scope(Scope): specific scope

    Returns:
        mse(float): mse value

    Example:
        .. code-block:: python

          # in model.py
          sqrerr, abserr, prob, q, pos, total = fluid.contrib.layers.ctr_metric_bundle(similarity_norm, fluid.layers.cast(x=label, dtype='float32'))

          # in train.py, after train or infer
          metric = np.array(scope.find_var(sqrerr.name).get_tensor())
331
          print("mse: ", paddle.distributed.fleet.mse(metric, total_ins_num))
X
xujiaqi01 已提交
332 333 334
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
335 336 337
    if util is None:
        util = fleet.util

X
xujiaqi01 已提交
338 339 340 341 342 343 344
    if isinstance(sqrerr, Variable):
        sqrerr = np.array(scope.find_var(sqrerr.name).get_tensor())
    elif isinstance(sqrerr, str):
        sqrerr = np.array(scope.find_var(sqrerr).get_tensor())
    old_metric_shape = np.array(sqrerr.shape)
    sqrerr = sqrerr.reshape(-1)
    global_metric = np.copy(sqrerr) * 0
T
tangwei12 已提交
345 346

    global_metric = util.all_reduce(sqrerr, "sum")
X
xujiaqi01 已提交
347
    global_metric = global_metric.reshape(old_metric_shape)
T
tangwei12 已提交
348

X
xujiaqi01 已提交
349 350 351 352
    mse_value = global_metric[0] / total_ins_num
    return mse_value


T
tangwei12 已提交
353
def acc(correct, total, scope=None, util=None):
X
xujiaqi01 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
    """
    distributed accuracy in fleet

    Args:
        correct(numpy.array|Variable|string): correct Variable
        total(numpy.array|Variable): total Variable
        scope(Scope): specific scope

    Returns:
        acc(float): accuracy value

    Example:
        .. code-block:: python

          # in model.py
          correct = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          total = fluid.layers.create_global_var(dtype='float32', shape=[1], value=0)
          acc = fluid.layers.acc(predict, label, k=1, correct=correct, total=total)

          global_correct = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp1 = fluid.layers.elementwise_min(correct, global_correct)
          fluid.layers.assign(tmp1, global_correct)

          global_total = fluid.layers.create_global_var(persistable=True, dtype='float32', shape=[1], value=0)
          tmp2 = fluid.layers.elementwise_min(total, global_total)
          fluid.layers.assign(tmp2, global_total)

          # in train.py, after train or infer
          correct_num = np.array(scope.find_var(correct.name).get_tensor())
          total_num = np.array(scope.find_var(total.name).get_tensor())
384
          print("accuracy: ", paddle.distributed.fleet.acc(correct_num, total_num))
X
xujiaqi01 已提交
385 386 387
    """
    if scope is None:
        scope = fluid.global_scope()
T
tangwei12 已提交
388 389 390
    if util is None:
        util = fleet.util

X
xujiaqi01 已提交
391 392 393 394 395 396 397 398
    if isinstance(correct, Variable):
        correct = np.array(scope.find_var(correct.name).get_tensor())
    elif isinstance(correct, str):
        correct = np.array(scope.find_var(correct).get_tensor())
    if isinstance(total, Variable):
        total = np.array(scope.find_var(total.name).get_tensor())
    elif isinstance(total, str):
        total = np.array(scope.find_var(total).get_tensor())
T
tangwei12 已提交
399

X
xujiaqi01 已提交
400 401
    global_correct_num = np.copy(correct) * 0
    global_total_num = np.copy(total) * 0
T
tangwei12 已提交
402 403 404 405

    global_correct_num = util.all_reduce(correct, "sum")
    global_total_num = util.all_reduce(total, "sum")

X
xujiaqi01 已提交
406
    return float(global_correct_num[0]) / float(global_total_num[0])