train_v2.py 6.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
hedaoyuan 已提交
15
import sys
H
hedaoyuan 已提交
16 17
import paddle.trainer_config_helpers.attrs as attrs
from paddle.trainer_config_helpers.poolings import MaxPooling
H
hedaoyuan 已提交
18
import paddle.v2 as paddle
19 20 21 22 23 24 25


def convolution_net(input_dim,
                    class_dim=2,
                    emb_dim=128,
                    hid_dim=128,
                    is_predict=False):
26 27 28 29 30 31 32 33 34 35 36 37
    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)
    conv_3 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=3, hidden_size=hid_dim)
    conv_4 = paddle.networks.sequence_conv_pool(
        input=emb, context_len=4, hidden_size=hid_dim)
    output = paddle.layer.fc(input=[conv_3, conv_4],
                             size=class_dim,
                             act=paddle.activation.Softmax())
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
H
hedaoyuan 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    return cost


def stacked_lstm_net(input_dim,
                     class_dim=2,
                     emb_dim=128,
                     hid_dim=512,
                     stacked_num=3,
                     is_predict=False):
    """
    A Wrapper for sentiment classification task.
    This network uses bi-directional recurrent network,
    consisting three LSTM layers. This configure is referred to
    the paper as following url, but use fewer layrs.
        http://www.aclweb.org/anthology/P15-1109

    input_dim: here is word dictionary dimension.
    class_dim: number of categories.
    emb_dim: dimension of word embedding.
    hid_dim: dimension of hidden layer.
    stacked_num: number of stacked lstm-hidden layer.
    is_predict: is predicting or not.
                Some layers is not needed in network when predicting.
    """
    assert stacked_num % 2 == 1

    layer_attr = attrs.ExtraLayerAttribute(drop_rate=0.5)
    fc_para_attr = attrs.ParameterAttribute(learning_rate=1e-3)
    lstm_para_attr = attrs.ParameterAttribute(initial_std=0., learning_rate=1.)
    para_attr = [fc_para_attr, lstm_para_attr]
    bias_attr = attrs.ParameterAttribute(initial_std=0., l2_rate=0.)
69 70 71 72 73 74 75 76 77 78 79 80
    relu = paddle.activation.Relu()
    linear = paddle.activation.Linear()

    data = paddle.layer.data("word",
                             paddle.data_type.integer_value_sequence(input_dim))
    emb = paddle.layer.embedding(input=data, size=emb_dim)

    fc1 = paddle.layer.fc(input=emb,
                          size=hid_dim,
                          act=linear,
                          bias_attr=bias_attr)
    lstm1 = paddle.layer.lstmemory(
H
hedaoyuan 已提交
81 82 83 84
        input=fc1, act=relu, bias_attr=bias_attr, layer_attr=layer_attr)

    inputs = [fc1, lstm1]
    for i in range(2, stacked_num + 1):
85 86 87 88 89 90
        fc = paddle.layer.fc(input=inputs,
                             size=hid_dim,
                             act=linear,
                             param_attr=para_attr,
                             bias_attr=bias_attr)
        lstm = paddle.layer.lstmemory(
H
hedaoyuan 已提交
91 92 93 94 95 96 97
            input=fc,
            reverse=(i % 2) == 0,
            act=relu,
            bias_attr=bias_attr,
            layer_attr=layer_attr)
        inputs = [fc, lstm]

98 99 100 101 102 103 104
    fc_last = paddle.layer.pooling(input=inputs[0], pooling_type=MaxPooling())
    lstm_last = paddle.layer.pooling(input=inputs[1], pooling_type=MaxPooling())
    output = paddle.layer.fc(input=[fc_last, lstm_last],
                             size=class_dim,
                             act=paddle.activation.Softmax(),
                             bias_attr=bias_attr,
                             param_attr=para_attr)
H
hedaoyuan 已提交
105

106 107
    lbl = paddle.layer.data("label", paddle.data_type.integer_value(2))
    cost = paddle.layer.classification_cost(input=output, label=lbl)
108 109 110 111 112 113 114 115
    return cost


if __name__ == '__main__':
    # init
    paddle.init(use_gpu=True, trainer_count=4)

    # network config
H
hedaoyuan 已提交
116
    print 'load dictionary...'
117
    word_dict = paddle.dataset.imdb.word_dict()
H
hedaoyuan 已提交
118 119
    dict_dim = len(word_dict)
    class_dim = 2
H
hedaoyuan 已提交
120 121 122 123 124

    # Please choose the way to build the network
    # by uncommenting the corresponding line.
    cost = convolution_net(dict_dim, class_dim=class_dim)
    # cost = stacked_lstm_net(dict_dim, class_dim=class_dim, stacked_num=3)
125 126 127 128

    # create parameters
    parameters = paddle.parameters.create(cost)

H
hedaoyuan 已提交
129
    # create optimizer
H
hedaoyuan 已提交
130 131 132 133
    adam_optimizer = paddle.optimizer.Adam(
        learning_rate=2e-3,
        regularization=paddle.optimizer.L2Regularization(rate=8e-4),
        model_average=paddle.optimizer.ModelAverage(average_window=0.5))
134

H
hedaoyuan 已提交
135
    # End batch and end pass event handler
136 137
    def event_handler(event):
        if isinstance(event, paddle.event.EndIteration):
H
hedaoyuan 已提交
138
            if event.batch_id % 100 == 0:
H
hedaoyuan 已提交
139
                print "\nPass %d, Batch %d, Cost %f, %s" % (
140
                    event.pass_id, event.batch_id, event.cost, event.metrics)
H
hedaoyuan 已提交
141 142 143
            else:
                sys.stdout.write('.')
                sys.stdout.flush()
H
hedaoyuan 已提交
144 145 146
        if isinstance(event, paddle.event.EndPass):
            result = trainer.test(
                reader=paddle.reader.batched(
147 148
                    lambda: paddle.dataset.imdb.test(word_dict),
                    batch_size=128),
H
hedaoyuan 已提交
149 150
                reader_dict={'word': 0,
                             'label': 1})
H
hedaoyuan 已提交
151
            print "\nTest with Pass %d, %s" % (event.pass_id, result.metrics)
152

H
hedaoyuan 已提交
153
    # create trainer
154 155 156 157 158 159
    trainer = paddle.trainer.SGD(cost=cost,
                                 parameters=parameters,
                                 update_equation=adam_optimizer)

    trainer.train(
        reader=paddle.reader.batched(
H
hedaoyuan 已提交
160
            paddle.reader.shuffle(
161
                lambda: paddle.dataset.imdb.train(word_dict), buf_size=1000),
H
hedaoyuan 已提交
162
            batch_size=100),
163 164 165 166
        event_handler=event_handler,
        reader_dict={'word': 0,
                     'label': 1},
        num_passes=10)