tensor.cc 13.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22 23 24 25 26 27
#include "paddle/phi/api/lib/ext_compat_utils.h"
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/selected_rows.h"
28 29
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
30 31 32
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
33 34 35 36 37
/**
 * [ Why still include the fluid headers? ]
 *
 * We hope to organize the basic implementation of Tensor and the logic related
 * to Tensor computation into an independent library, which we call
38
 * [Tensor Operation Library, phi], so we extract or rewrite the original
39 40 41 42 43 44 45 46 47 48 49 50
 * Kernels.
 *
 * In the future, the training library, inference library and custom operators
 * will link to this Tensor Operation library.
 *
 * However, if we directly split the link relation, we need to make too many
 * changes, which will affect the stability of the framework, so here we still
 * rely on the implementation of the framework, which is a intermediate state.
 *
 * In the future, the necessary components will be moved to the this library,
 * or the corresponding components will be re-implemented.
 */
51

52 53 54
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/stream/cuda_stream.h"
55 56 57 58
#include "paddle/phi/common/complex.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
59 60 61 62 63 64 65 66

namespace paddle {
namespace experimental {

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

67
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
68
    : impl_(std::move(tensor_impl)) {
69 70 71
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
72 73 74
}

Tensor::Tensor(const PlaceType &place)
75 76
    : impl_(std::move(std::make_shared<phi::DenseTensor>(
          std::move(phi::make_intrusive<SharedStorage>(
77
              ConvertExtPlaceToInnerPlace(place))),
78 79 80
          std::move(phi::DenseTensorMeta(phi::DataType::UNDEFINED,
                                         phi::make_ddim({}),
                                         phi::DataLayout::NCHW))))),
81
      place_{place} {}
82 83

Tensor::Tensor(const PlaceType &place, const std::vector<int64_t> &shape)
84 85
    : impl_(std::move(std::make_shared<phi::DenseTensor>(
          std::move(phi::make_intrusive<SharedStorage>(
86
              ConvertExtPlaceToInnerPlace(place))),
87 88 89
          std::move(phi::DenseTensorMeta(phi::DataType::UNDEFINED,
                                         phi::make_ddim(shape),
                                         phi::DataLayout::NCHW))))),
90
      place_{place} {}
91

92
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
93 94
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
95 96 97 98 99 100
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

101
phi::DDim Tensor::dims() const { return impl_->dims(); }
102 103

std::vector<int64_t> Tensor::shape() const {
104
  return phi::vectorize<int64_t>(impl_->dims());
105 106 107
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
108 109 110 111 112 113 114 115
  LOG(WARNING) << "The function of resetting the shape of the uninitialized "
                  "Tensor of the `reshape` method is deprecated since version "
                  "2.3, and will be removed in version 2.4, please use "
                  "`paddle::experimental::full` method to create a new Tensor "
                  "instead. "
                  "reason: `reshape` means changing the tensor shape without "
                  "touching underlying data, this requires the total size of "
                  "the tensor to remain constant.";
C
Chen Weihang 已提交
116
  if (is_dense_tensor()) {
117 118
    std::dynamic_pointer_cast<phi::DenseTensor>(impl_)->Resize(
        phi::make_ddim(shape));
119
  } else {
120
    PADDLE_THROW(phi::errors::Unimplemented(
121 122
        "Only support reshape operation on DenseTensor now."));
  }
123 124
}

125
DataType Tensor::dtype() const { return impl_->dtype(); }
126

127
DataType Tensor::type() const { return impl_->dtype(); }
128 129 130

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
131
bool Tensor::is_dense_tensor() const {
132
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
133
}
134
bool Tensor::is_selected_rows() const {
135
  return phi::SelectedRows::classof(impl_.get());
136
}
137 138 139 140 141 142
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
143 144 145
/* Part 3: Device and Backend methods */

PlaceType Tensor::place() const {
146 147 148 149 150
  if (!impl_->initialized()) {
    return place_;
  } else {
    return ConvertInnerPlaceToExtPlace(impl_->place());
  }
151 152
}

153
paddle::platform::Place Tensor::inner_place() const {
154 155 156 157 158 159
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::inner_place()."));
  return impl_->place();
160
}
161 162

bool Tensor::is_cpu() const {
163
  return paddle::platform::is_cpu_place(inner_place());
164 165 166
}

bool Tensor::is_cuda() const {
167
  return paddle::platform::is_gpu_place(inner_place());
168 169 170 171 172 173
}

/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
C
Chen Weihang 已提交
174
  if (is_dense_tensor()) {
175
    return std::dynamic_pointer_cast<phi::DenseTensor>(impl_)->mutable_data<T>(
176
        ConvertExtPlaceToInnerPlace(place()));
177 178 179 180
  }
  return nullptr;
}

181 182 183 184 185 186 187 188
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
189 190 191 192 193 194
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
195 196 197 198

template <typename T>
T *Tensor::mutable_data(const PlaceType &place) {
  auto inner_place = ConvertExtPlaceToInnerPlace(place);
199 200 201 202
  if (impl_->initialized()) {
    PADDLE_ENFORCE_EQ(
        platform::is_same_place(inner_place, impl_->place()),
        true,
203 204
        phi::errors::Unimplemented("Modification of tensor place through "
                                   "mutable_data is not supported now"));
205 206
  }
  if (is_dense_tensor()) {
207
    return std::dynamic_pointer_cast<phi::DenseTensor>(impl_)->mutable_data<T>(
208 209 210
        inner_place);
  }
  return nullptr;
211 212
}

213 214
template PADDLE_API float *Tensor::mutable_data<float>(const PlaceType &place);
template PADDLE_API double *Tensor::mutable_data<double>(
215
    const PlaceType &place);
216
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(
217
    const PlaceType &place);
218
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(
219
    const PlaceType &place);
220
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(
221
    const PlaceType &place);
222
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(
223
    const PlaceType &place);
224
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(
225
    const PlaceType &place);
226
template PADDLE_API bool *Tensor::mutable_data<bool>(const PlaceType &place);
227 228 229 230 231 232
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>(const PlaceType &place);
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>(const PlaceType &place);
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>(const PlaceType &place);
233 234 235

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
236
  if (is_dense_tensor()) {
237 238 239
    return std::dynamic_pointer_cast<phi::DenseTensor>(impl_)->data<T>();
  } else if (phi::SelectedRows::classof(impl_.get())) {
    return std::dynamic_pointer_cast<phi::SelectedRows>(impl_)
240 241
        ->value()
        .data<T>();
242 243 244 245
  }
  return nullptr;
}

246 247 248 249 250 251 252 253
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
254 255 256 257 258 259 260 261
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
262 263 264

template <typename T>
T *Tensor::data() {
265
  if (is_dense_tensor()) {
266 267 268
    return std::dynamic_pointer_cast<phi::DenseTensor>(impl_)->data<T>();
  } else if (phi::SelectedRows::classof(impl_.get())) {
    return std::dynamic_pointer_cast<phi::SelectedRows>(impl_)
269 270 271
        ->mutable_value()
        ->data<T>();
  }
272 273 274
  return nullptr;
}

275 276 277 278 279 280 281 282
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
283 284 285 286 287
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
288

289
// TODO(chenweihang): replace slice impl by API
290
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
291
  if (is_dense_tensor()) {
292 293 294
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
            *(std::dynamic_pointer_cast<phi::DenseTensor>(impl_).get()),
295 296 297
            begin_idx,
            end_idx))));
  } else {
298
    PADDLE_THROW(phi::errors::Unimplemented(
299
        "Only support slice operation on DenseTensor now."));
300
  }
301 302
}

303
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
304

305
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
306 307 308
  impl_ = impl;
}

309 310 311 312
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

313 314 315 316 317 318
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
  return platform::stream::get_current_stream(-1)->raw_stream();
}
#endif

319
/* Part 5: Status utils methods */
320 321 322

bool Tensor::defined() const { return impl_ != nullptr; }

323
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
324 325

bool Tensor::is_initialized() const {
326
  return defined() && impl_->initialized();
327 328 329 330
}

void Tensor::reset() { impl_.reset(); }

331
/* Part 6: Operator overloading */
332 333 334 335

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
336 337
  name_ = x.name_;
  place_ = x.place_;
338 339 340 341 342 343
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
344 345
  name_ = std::move(x.name_);
  place_ = std::move(x.place_);
346 347 348 349 350 351 352 353 354 355 356 357
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
        std::dynamic_pointer_cast<phi::DenseTensor>(impl_)
            ->InplaceVersionCounter();
    VLOG(3) << "yoki: before bump inplace version: "
            << inplace_version_counter.CurrentVersion();
    inplace_version_counter.Bump();
    VLOG(3) << "yoki: after bump inplace version: "
            << inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
        std::dynamic_pointer_cast<phi::DenseTensor>(impl_)
            ->InplaceVersionCounter();
    VLOG(3) << "yoki: print version: "
            << inplace_version_counter.CurrentVersion();
    return inplace_version_counter.CurrentVersion();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "current_inplace_version is only supported on DenseTensor now."));
  }
  return 0;
}

389 390
}  // namespace experimental
}  // namespace paddle