decorator.py 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

H
Helin Wang 已提交
15
__all__ = [
S
sneaxiy 已提交
16
    'cache', 'map_readers', 'buffered', 'compose', 'chain', 'shuffle',
17
    'ComposeNotAligned', 'firstn', 'xmap_readers', 'multiprocess_reader'
H
Helin Wang 已提交
18
]
19

T
tangwei12 已提交
20 21
from threading import Thread
import subprocess
Q
Qiao Longfei 已提交
22
import multiprocessing
23
import six
Q
Qiao Longfei 已提交
24
import sys
T
tangwei12 已提交
25

26
from six.moves.queue import Queue
27
from six.moves import zip_longest
28 29
from six.moves import map
from six.moves import zip
30 31
import itertools
import random
T
tangwei12 已提交
32
import zlib
M
minqiyang 已提交
33
import paddle.compat as cpt
34 35


S
sneaxiy 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48
def cache(reader):
    """
    Cache the reader data into memory. 

    Be careful that this method may take long time to process, 
    and consume lots of memory. :code:`reader()` would only 
    call once. 

    Args:
        reader (generator): a reader object which yields 
            data each time.

    Returns:
S
sneaxiy 已提交
49
        generator: a decorated reader object which yields data from cached memory.
S
sneaxiy 已提交
50 51 52 53 54 55 56 57 58 59
    """
    all_data = tuple(reader())

    def __impl__():
        for item in all_data:
            yield item

    return __impl__


H
Helin Wang 已提交
60 61 62
def map_readers(func, *readers):
    """
    Creates a data reader that outputs return value of function using
63
    output of each data reader as arguments.
H
Helin Wang 已提交
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    If input readers output the following data entries: 2 3,
    and the input func is mul(x, y),
    the output of the resulted reader will be 6.


    Args:
        func: a function to read data and compute result, the output of this function 
              will be set as the output of the resulted data reader.
        readers (Reader|list of Reader): list of readers whose outputs will be used as arguments of func.
 
    Returns:
        the resulted data reader (Reader)

    Examples:

        .. code-block:: python

         import paddle.reader
         d = {"h": 0, "i": 1}
         def func(x):
             return d[x]
         def reader():
             yield "h"
             yield "i"
         map_reader_result = paddle.reader.map_readers(func, reader)
H
Helin Wang 已提交
90 91 92 93 94 95
    """

    def reader():
        rs = []
        for r in readers:
            rs.append(r())
96
        for e in map(func, *rs):
H
Helin Wang 已提交
97 98 99 100 101
            yield e

    return reader


H
Helin Wang 已提交
102
def shuffle(reader, buf_size):
103
    """
Y
Yu Yang 已提交
104
    Creates a data reader whose data output is shuffled.
105

H
Helin Wang 已提交
106
    Output from the iterator that created by original reader will be
107 108 109
    buffered into shuffle buffer, and then shuffled. The size of shuffle buffer
    is determined by argument buf_size.

110
    :param reader: the original reader whose output will be shuffled.
Y
Yu Yang 已提交
111
    :type reader: callable
112
    :param buf_size: shuffle buffer size.
Y
Yu Yang 已提交
113
    :type buf_size: int
114

Y
Yu Yang 已提交
115 116
    :return: the new reader whose output is shuffled.
    :rtype: callable
117 118
    """

H
Helin Wang 已提交
119
    def data_reader():
120
        buf = []
H
Helin Wang 已提交
121
        for e in reader():
122 123 124 125 126 127 128 129 130 131 132 133
            buf.append(e)
            if len(buf) >= buf_size:
                random.shuffle(buf)
                for b in buf:
                    yield b
                buf = []

        if len(buf) > 0:
            random.shuffle(buf)
            for b in buf:
                yield b

H
Helin Wang 已提交
134
    return data_reader
135 136


H
Helin Wang 已提交
137
def chain(*readers):
138
    """
139 140
    Use the input data readers to create a chained data reader. The new created reader
    chains the outputs of input readers together as its output.
141

142 143 144 145 146 147 148 149
    **Note**:
        ``paddle.reader.chain`` is the alias of ``paddle.fluid.io.chain``, and
        ``paddle.fluid.io.chain`` is recommended to use.

    For example, if three input readers' outputs are as follows:
    [0, 0, 0],
    [10, 10, 10],
    [20, 20, 20].
H
Helin Wang 已提交
150
    The chained reader will output:
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
    [[0, 0, 0], [10, 10, 10], [20, 20, 20]].

    Args:
        readers(list): input data readers.

    Returns:
        callable: the new chained data reader.

    Examples:
        ..  code-block:: python

            import paddle

            def reader_creator_3(start):
                def reader():
                    for i in range(start, start + 3):
                        yield [i, i, i]
                return reader

            c = paddle.reader.chain(reader_creator_3(0), reader_creator_3(10), reader_creator_3(20))
            for e in c():
                print(e)
            # Output:
            # [0, 0, 0]
            # [1, 1, 1]
            # [2, 2, 2]
            # [10, 10, 10]
            # [11, 11, 11]
            # [12, 12, 12]
            # [20, 20, 20]
            # [21, 21, 21]
            # [22, 22, 22]
183 184 185

    """

H
Helin Wang 已提交
186
    def reader():
187
        rs = []
H
Helin Wang 已提交
188
        for r in readers:
189 190 191 192 193
            rs.append(r())

        for e in itertools.chain(*rs):
            yield e

H
Helin Wang 已提交
194
    return reader
195 196


H
Helin Wang 已提交
197
class ComposeNotAligned(ValueError):
198 199 200
    pass


H
Helin Wang 已提交
201
def compose(*readers, **kwargs):
202 203
    """
    Creates a data reader whose output is the combination of input readers.
204

H
Helin Wang 已提交
205
    If input readers output following data entries:
206
    (1, 2)    3    (4, 5)
H
Helin Wang 已提交
207
    The composed reader will output:
208 209
    (1, 2, 3, 4, 5)

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    Args:
        readers (Reader|list of Reader): readers that will be composed together. 
        check_alignment(bool, optional): Indicates whether the input readers are checked for
                              alignment. If True, whether input readers are aligned
                              correctly will be checked, else alignment will not be checkout and trailing outputs
                              will be discarded. Defaults to True.

    Returns: 
        the new data reader (Reader).

    Raises:
        ComposeNotAligned: outputs of readers are not aligned. This will not raise if check_alignment is set to False.
  
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          def reader_creator_10(dur):
              def reader():
                 for i in range(10):
                     yield i
              return reader
          reader = fluid.io.compose(reader_creator_10(0), reader_creator_10(0))
233 234 235 236 237 238 239 240 241
    """
    check_alignment = kwargs.pop('check_alignment', True)

    def make_tuple(x):
        if isinstance(x, tuple):
            return x
        else:
            return (x, )

H
Helin Wang 已提交
242
    def reader():
243
        rs = []
H
Helin Wang 已提交
244
        for r in readers:
245 246
            rs.append(r())
        if not check_alignment:
247 248
            for outputs in zip(*rs):
                yield sum(list(map(make_tuple, outputs)), ())
249
        else:
250
            for outputs in zip_longest(*rs):
251 252 253
                for o in outputs:
                    if o is None:
                        # None will be not be present if compose is aligned
H
Helin Wang 已提交
254 255
                        raise ComposeNotAligned(
                            "outputs of readers are not aligned.")
256
                yield sum(list(map(make_tuple, outputs)), ())
257

H
Helin Wang 已提交
258
    return reader
259 260


H
Helin Wang 已提交
261
def buffered(reader, size):
262 263
    """
    Creates a buffered data reader.
264

H
Helin Wang 已提交
265 266
    The buffered data reader will read and save data entries into a
    buffer. Reading from the buffered data reader will proceed as long
267
    as the buffer is not empty.
268

269
    :param reader: the data reader to read from.
Y
Yu Yang 已提交
270
    :type reader: callable
271
    :param size: max buffer size.
Y
Yu Yang 已提交
272
    :type size: int
273

274
    :returns: the buffered data reader.
275 276 277 278 279 280 281 282 283 284 285 286
    """

    class EndSignal():
        pass

    end = EndSignal()

    def read_worker(r, q):
        for d in r:
            q.put(d)
        q.put(end)

H
Helin Wang 已提交
287 288
    def data_reader():
        r = reader()
289
        q = Queue(maxsize=size)
290 291 292 293 294 295 296 297 298 299 300
        t = Thread(
            target=read_worker, args=(
                r,
                q, ))
        t.daemon = True
        t.start()
        e = q.get()
        while e != end:
            yield e
            e = q.get()

H
Helin Wang 已提交
301
    return data_reader
Y
Yu Yang 已提交
302 303


Y
Yu Yang 已提交
304
def firstn(reader, n):
Y
Yu Yang 已提交
305 306
    """
    Limit the max number of samples that reader could return.
Y
Yu Yang 已提交
307 308 309 310 311 312 313

    :param reader: the data reader to read from.
    :type reader: callable
    :param n: the max number of samples that return.
    :type n: int
    :return: the decorated reader.
    :rtype: callable
Y
Yu Yang 已提交
314 315
    """

Y
Yu Yang 已提交
316 317 318 319
    # TODO(yuyang18): Check if just drop the reader, could clean the opened
    # resource or not?

    def firstn_reader():
Y
Yu Yang 已提交
320
        for i, item in enumerate(reader()):
Y
Yu Yang 已提交
321
            if i == n:
Y
Yu Yang 已提交
322 323 324
                break
            yield item

Y
Yu Yang 已提交
325
    return firstn_reader
326 327 328 329 330 331


class XmapEndSignal():
    pass


332
def xmap_readers(mapper, reader, process_num, buffer_size, order=False):
333
    """
Z
Zeng Jinle 已提交
334 335 336 337 338 339 340 341 342 343 344 345
    Use multi-threads to map samples from reader by a mapper defined by user.

    Args:
        mapper (callable): a function to map the data from reader.
        reader (callable): a data reader which yields the data. 
        process_num (int): thread number to handle original sample.
        buffer_size (int): size of the queue to read data in. 
        order (bool): whether to keep the data order from original reader. 
            Default False.

    Returns:
        callable: a decorated reader with data mapping. 
346 347
    """
    end = XmapEndSignal()
W
wanghaoshuang 已提交
348

349 350 351 352 353
    # define a worker to read samples from reader to in_queue
    def read_worker(reader, in_queue):
        for i in reader():
            in_queue.put(i)
        in_queue.put(end)
W
wanghaoshuang 已提交
354

355 356 357 358
    # define a worker to read samples from reader to in_queue with order flag
    def order_read_worker(reader, in_queue):
        in_order = 0
        for i in reader():
W
wanghaoshuang 已提交
359 360
            in_queue.put((in_order, i))
            in_order += 1
361
        in_queue.put(end)
362 363 364 365 366 367 368 369 370 371 372

    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue
    def handle_worker(in_queue, out_queue, mapper):
        sample = in_queue.get()
        while not isinstance(sample, XmapEndSignal):
            r = mapper(sample)
            out_queue.put(r)
            sample = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
W
wanghaoshuang 已提交
373

374 375 376 377 378 379 380 381 382 383
    # define a worker to handle samples from in_queue by mapper
    # and put mapped samples into out_queue by order
    def order_handle_worker(in_queue, out_queue, mapper, out_order):
        ins = in_queue.get()
        while not isinstance(ins, XmapEndSignal):
            order, sample = ins
            r = mapper(sample)
            while order != out_order[0]:
                pass
            out_queue.put(r)
W
wanghaoshuang 已提交
384
            out_order[0] += 1
385 386 387
            ins = in_queue.get()
        in_queue.put(end)
        out_queue.put(end)
388 389

    def xreader():
390 391
        in_queue = Queue(buffer_size)
        out_queue = Queue(buffer_size)
392 393 394 395 396 397 398 399 400 401 402
        out_order = [0]
        # start a read worker in a thread
        target = order_read_worker if order else read_worker
        t = Thread(target=target, args=(reader, in_queue))
        t.daemon = True
        t.start()
        # start several handle_workers
        target = order_handle_worker if order else handle_worker
        args = (in_queue, out_queue, mapper, out_order) if order else (
            in_queue, out_queue, mapper)
        workers = []
403
        for i in range(process_num):
404 405 406 407 408 409
            worker = Thread(target=target, args=args)
            worker.daemon = True
            workers.append(worker)
        for w in workers:
            w.start()

410 411 412 413 414 415 416 417 418 419 420 421 422
        sample = out_queue.get()
        while not isinstance(sample, XmapEndSignal):
            yield sample
            sample = out_queue.get()
        finish = 1
        while finish < process_num:
            sample = out_queue.get()
            if isinstance(sample, XmapEndSignal):
                finish += 1
            else:
                yield sample

    return xreader
423 424


Q
Qiao Longfei 已提交
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
def multiprocess_reader(readers, use_pipe=True, queue_size=1000):
    """
    multiprocess_reader use python multi process to read data from readers
    and then use multiprocess.Queue or multiprocess.Pipe to merge all
    data. The process number is equal to the number of input readers, each
    process call one reader.

    Multiprocess.Queue require the rw access right to /dev/shm, some
    platform does not support.

    you need to create multiple readers first, these readers should be independent
    to each other so that each process can work independently.

    An example:

    .. code-block:: python

        reader0 = reader(["file01", "file02"])
        reader1 = reader(["file11", "file12"])
        reader1 = reader(["file21", "file22"])
        reader = multiprocess_reader([reader0, reader1, reader2],
            queue_size=100, use_pipe=False)
    """

    try:
        import ujson as json
    except Exception as e:
        sys.stderr.write("import ujson error: " + str(e) + " use json\n")
        import json

    assert type(readers) is list and len(readers) > 0

    def _read_into_queue(reader, queue):
458 459 460 461 462 463 464 465 466
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None")
                queue.put(sample)
            queue.put(None)
        except:
            queue.put("")
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480

    def queue_reader():
        queue = multiprocessing.Queue(queue_size)
        for reader in readers:
            p = multiprocessing.Process(
                target=_read_into_queue, args=(reader, queue))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        while finish_num < reader_num:
            sample = queue.get()
            if sample is None:
                finish_num += 1
481 482
            elif sample == "":
                raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
483 484 485 486
            else:
                yield sample

    def _read_into_pipe(reader, conn):
487 488 489 490 491 492 493 494 495 496 497
        try:
            for sample in reader():
                if sample is None:
                    raise ValueError("sample has None!")
                conn.send(json.dumps(sample))
            conn.send(json.dumps(None))
            conn.close()
        except:
            conn.send(json.dumps(""))
            conn.close()
            six.reraise(*sys.exc_info())
Q
Qiao Longfei 已提交
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

    def pipe_reader():
        conns = []
        for reader in readers:
            parent_conn, child_conn = multiprocessing.Pipe()
            conns.append(parent_conn)
            p = multiprocessing.Process(
                target=_read_into_pipe, args=(reader, child_conn))
            p.start()

        reader_num = len(readers)
        finish_num = 0
        conn_to_remove = []
        while finish_num < reader_num:
            for conn in conn_to_remove:
                conns.remove(conn)
            conn_to_remove = []
            for conn in conns:
                sample = json.loads(conn.recv())
                if sample is None:
                    finish_num += 1
                    conn.close()
                    conn_to_remove.append(conn)
521 522 523 524
                elif sample == "":
                    conn.close()
                    conn_to_remove.append(conn)
                    raise ValueError("multiprocess reader raises an exception")
Q
Qiao Longfei 已提交
525 526 527 528 529 530 531
                else:
                    yield sample

    if use_pipe:
        return pipe_reader
    else:
        return queue_reader