test_optimizer.py 53.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import os
import tempfile
Q
Qiao Longfei 已提交
17 18
import unittest

19 20 21 22
import numpy
import numpy as np

import paddle
23
import paddle.fluid as fluid
24
import paddle.fluid.core as core
25 26 27
import paddle.fluid.framework as framework
import paddle.fluid.optimizer as optimizer
from paddle.fluid.backward import append_backward
28 29 30
from paddle.fluid.framework import (
    Program,
    convert_np_dtype_to_dtype_,
31
    program_guard,
32
)
33
from paddle.io import Dataset
34

Q
Qiao Longfei 已提交
35 36 37

class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
Q
qiaolongfei 已提交
38 39 40 41
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
Q
qiaolongfei 已提交
67 68 69 70 71
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            opts, _ = sgd_optimizer.minimize(mean_out, init_program)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
72 73
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
Q
Qiao Longfei 已提交
74

Q
qiaolongfei 已提交
75 76 77 78
        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])

Q
Qiao Longfei 已提交
79

80 81 82 83 84 85
class TestOptimizerBackwardApplygrad(unittest.TestCase):
    def test_sgd_optimizer(self):
        def check_sgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
111 112 113 114 115 116 117
            sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
            with framework.program_guard(program, init_program):
                p_g = sgd_optimizer.backward(mean_out)
                opts = sgd_optimizer.apply_gradients(p_g)
            return opts

        opts = check_sgd_optimizer({'learning_rate': 1.1})
118 119
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
120 121 122 123 124 125

        opts = check_sgd_optimizer({'learning_rate': 1.0})
        self.assertEqual(len(opts), 1)
        self.assertEqual([op.type for op in opts], ["sgd"])


126 127 128 129 130 131 132 133
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

134
    def test_vanilla_momentum_optimizer(self):
Q
Qiao Longfei 已提交
135
        init_program = framework.Program()
136 137
        program = framework.Program()
        block = program.global_block()
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
Q
Qiao Longfei 已提交
157
        learning_rate = 0.01
158 159 160 161 162 163 164 165 166
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
F
fengjiayi 已提交
167
        params_grads = append_backward(mean_out)
168 169
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
170 171
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
172
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
173
        sgd_op = opts[-1]
174
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
175
        self.assertFalse(sgd_op.attr('use_nesterov'))
176 177 178 179 180 181 182 183 184

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
185 186 187 188
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
189 190 191
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
192

193
    def test_nesterov_momentum_optimizer(self):
Q
Qiao Longfei 已提交
194
        init_program = framework.Program()
195 196
        program = framework.Program()
        block = program.global_block()
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
Q
Qiao Longfei 已提交
222
        learning_rate = 0.01
223 224 225
        momentum_optimizer = self.MockMomentum(
            learning_rate=learning_rate, momentum=0.2, use_nesterov=True
        )
F
fengjiayi 已提交
226
        params_grads = append_backward(mean_out)
227 228
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
229 230
        with framework.program_guard(program, init_program):
            opts = momentum_optimizer.apply_gradients(params_grads)
231
        self.assertEqual(len(opts), 2)
Y
Yancey1989 已提交
232
        sgd_op = opts[-1]
233
        self.assertEqual([op.type for op in opts], ["scale", "momentum"])
234
        self.assertTrue(sgd_op.attr('use_nesterov'))
235 236 237 238 239 240 241 242 243

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

Q
Qiao Longfei 已提交
244 245 246 247
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
248 249 250
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
251

252

253 254 255 256 257 258 259 260 261
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
Q
Qiao Longfei 已提交
262
        init_program = framework.Program()
263 264
        program = framework.Program()
        block = program.global_block()
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
Q
Qiao Longfei 已提交
290
        learning_rate = 0.01
291 292 293
        adagrad_optimizer = self.MockAdagrad(
            learning_rate=learning_rate, epsilon=1.0e-6
        )
F
fengjiayi 已提交
294
        params_grads = append_backward(mean_out)
295 296
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
297 298
        with framework.program_guard(program, init_program):
            opts = adagrad_optimizer.apply_gradients(params_grads)
299 300
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adagrad"])
301

302
        # Check accumulators
303 304 305 306 307 308 309
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

Q
Qiao Longfei 已提交
310 311
        # Check init_program
        init_ops = init_program.global_block().ops
Z
zhongpu 已提交
312
        self.assertEqual(len(init_ops), 2)
Q
Qiao Longfei 已提交
313
        self.assertEqual(init_ops[1].type, "fill_constant")
314 315 316
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
Q
Qiao Longfei 已提交
317

318

319 320 321 322 323 324 325 326 327 328 329 330
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
Q
Qiao Longfei 已提交
331
        init_program = framework.Program()
332 333
        program = framework.Program()
        block = program.global_block()
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
Q
Qiao Longfei 已提交
359
        learning_rate = 0.01
360 361 362
        adam_optimizer = self.MockAdam(
            learning_rate=learning_rate, beta1=0.9, beta2=0.999
        )
F
fengjiayi 已提交
363
        params_grads = append_backward(mean_out)
364 365
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
366 367
        with framework.program_guard(program, init_program):
            opts = adam_optimizer.apply_gradients(params_grads)
A
Aurelius84 已提交
368 369
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "adam"])
370 371 372

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
Q
qiaolongfei 已提交
373
        self.assertEqual(len(accumulators), 4)
374 375 376 377 378 379 380 381 382
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)

Q
Qiao Longfei 已提交
383 384 385
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 5)
386 387
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
388

389

390 391 392 393 394 395 396 397 398 399 400 401
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
Q
Qiao Longfei 已提交
402
        init_program = framework.Program()
403 404
        program = framework.Program()
        block = program.global_block()
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
Q
Qiao Longfei 已提交
430
        learning_rate = 0.01
431 432 433
        adamax_optimizer = self.MockAdamax(
            learning_rate=learning_rate, beta1=0.9, beta2=0.999
        )
F
fengjiayi 已提交
434
        params_grads = append_backward(mean_out)
435 436
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
437 438
        with framework.program_guard(program, init_program):
            opts = adamax_optimizer.apply_gradients(params_grads)
439 440
        self.assertEqual(len(opts), 3)
        self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"])
441 442 443

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
Q
qiaolongfei 已提交
444
        self.assertEqual(len(accumulators), 3)
445 446 447 448 449 450 451 452 453
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)

Q
Qiao Longfei 已提交
454 455 456
        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 4)
457 458
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
Qiao Longfei 已提交
459

460

461 462 463 464 465 466
class TestDpsgdOptimizer(unittest.TestCase):
    def test_dpsgd_optimizer(self):
        def check_dpsgd_optimizer(optimizer_attr):
            init_program = framework.Program()
            program = framework.Program()
            block = program.global_block()
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
            mul_x = block.create_parameter(
                dtype="float32",
                shape=[5, 10],
                lod_level=0,
                name="mul.x",
                optimize_attr=optimizer_attr,
            )
            mul_y = block.create_var(
                dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
            )
            mul_out = block.create_var(
                dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
            )
            block.append_op(
                type="mul",
                inputs={"X": mul_x, "Y": mul_y},
                outputs={"Out": mul_out},
                attrs={"x_num_col_dims": 1},
            )
            mean_out = block.create_var(
                dtype="float32", shape=[1], lod_level=0, name="mean.out"
            )
            block.append_op(
                type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
            )
            dpsgd_optimizer = optimizer.DpsgdOptimizer(
                learning_rate=0.01, clip=100.0, batch_size=16.0, sigma=0.0
            )
495 496 497
            opts, _ = dpsgd_optimizer.minimize(mean_out, init_program)
            return opts

498 499 500 501 502 503 504 505
        opts = check_dpsgd_optimizer(
            {
                'learning_rate': 1.1,
                'clip': 100.0,
                'batch_size': 16.0,
                'sigma': 4.0,
            }
        )
506 507 508 509
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "dpsgd"])


510 511 512 513 514 515 516 517 518 519 520 521
class TestDecayedAdagradOptimizer(unittest.TestCase):
    class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_decayed_adagrad_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
547 548
        learning_rate = 0.01
        decayed_adagrad_optimizer = self.MockDecayedAdagrad(
549 550
            learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6
        )
F
fengjiayi 已提交
551
        params_grads = append_backward(mean_out)
552 553
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0)
554 555
        with framework.program_guard(program, init_program):
            opts = decayed_adagrad_optimizer.apply_gradients(params_grads)
556 557
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"])
558 559 560 561 562

        # Check accumulators
        accumulators = decayed_adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(
563 564
            decayed_adagrad_optimizer.get_moment_str() in accumulators
        )
565 566 567 568 569 570 571 572
        moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 2)
        self.assertEqual(init_ops[1].type, "fill_constant")
573 574 575
        self.assertAlmostEqual(init_ops[1].attr('value'), learning_rate)
        self.assertEqual(init_ops[0].type, "fill_constant")
        self.assertAlmostEqual(init_ops[0].attr('value'), 0.0)
576 577


Q
qiaolongfei 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
class TestFtrlOptimizer(unittest.TestCase):
    class MockFtrl(optimizer.FtrlOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_squared_str(self):
            return self._squared_acc_str

        def get_linear_str(self):
            return self._linear_acc_str

    def test_ftrl_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
Q
qiaolongfei 已提交
618
        learning_rate = 0.01
619 620 621
        ftrl_optimizer = self.MockFtrl(
            learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5
        )
Q
qiaolongfei 已提交
622 623 624
        params_grads = append_backward(mean_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0)
625 626
        with framework.program_guard(program, init_program):
            opts = ftrl_optimizer.apply_gradients(params_grads)
627 628
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "ftrl"])
Q
qiaolongfei 已提交
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

        # Check accumulators
        accumulators = ftrl_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators)
        self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators)
        squared_acc = accumulators[ftrl_optimizer.get_squared_str()]
        linear_acc = accumulators[ftrl_optimizer.get_linear_str()]
        self.assertEqual(len(squared_acc), 1)
        self.assertEqual(len(linear_acc), 1)
        self.assertTrue(mul_x.name in squared_acc)
        self.assertTrue(mul_x.name in linear_acc)

        # Check init_program
        init_ops = init_program.global_block().ops
        self.assertEqual(len(init_ops), 3)
645 646
        self.assertEqual(init_ops[-1].type, "fill_constant")
        self.assertAlmostEqual(init_ops[-1].attr('value'), learning_rate)
Q
qiaolongfei 已提交
647 648


M
mapingshuo 已提交
649 650 651 652 653 654
class TestLookaheadOptimizer(unittest.TestCase):
    def test_lookahead_optimizer(self):
        init_program = framework.Program()
        program = framework.Program()
        block = program.global_block()
        init_block = init_program.global_block()
655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
        mul_x = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="mul.x",
            optimize_attr={'learning_rate': 1.1},
        )
        init_mul_x = init_block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x"
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )

        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        block.append_op(
            type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}
        )
M
mapingshuo 已提交
684 685 686 687 688

        sgd = optimizer.SGD(learning_rate=0.01)
        lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5)
        with framework.program_guard(program, init_program):
            opts, _ = lookahead.minimize(mean_out)
689 690
        self.assertEqual(len(opts), 2)
        self.assertEqual([op.type for op in opts], ["scale", "sgd"])
M
mapingshuo 已提交
691 692


M
mapingshuo 已提交
693
class TestRecomputeOptimizer(unittest.TestCase):
694
    def net(self, return_input=False, with_dropout=False, with_seed=False):
M
mapingshuo 已提交
695 696
        program = framework.Program()
        block = program.global_block()
697 698 699 700 701 702 703 704 705
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x"
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
706 707

        if with_dropout is True:
708 709 710 711 712 713 714 715 716
            mul_out_drop = block.create_var(
                dtype="float32",
                shape=[5, 8],
                lod_level=0,
                name="mul.out.dropout",
            )
            mul_out_mask = block.create_var(
                dtype="uint8", shape=[5, 8], lod_level=0, name="mul.out.mask"
            )
717
            if with_seed is True:
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
                seed_out = block.create_var(
                    dtype="int32", shape=[1], name="seed.out"
                )

        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1"
        )
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out"
        )
        b2 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2"
        )
        b2_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b2_out"
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
743 744 745 746

        if with_dropout is True:
            dropout_inputs = {'X': [mul_out]}
            if with_seed is True:
747 748 749 750 751 752 753 754 755
                block.append_op(
                    type='seed',
                    outputs={'Out': seed_out},
                    attrs={
                        'deterministic': True,
                        'rng_name': 'rng0',
                        'force_cpu': True,
                    },
                )
756 757
                dropout_inputs = {'X': [mul_out], 'Seed': [seed_out]}

758 759 760 761 762 763 764 765 766 767 768 769 770
            block.append_op(
                type='dropout',
                inputs=dropout_inputs,
                outputs={'Out': [mul_out_drop], 'Mask': [mul_out_mask]},
                attrs={
                    'dropout_prob': 0.5,
                },
            )
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out_drop, "Y": b1},
                outputs={"Out": b1_out},
            )
M
mapingshuo 已提交
771
        else:
772 773 774 775 776 777 778 779 780 781 782 783 784 785
            block.append_op(
                type="elementwise_add",
                inputs={"X": mul_out, "Y": b1},
                outputs={"Out": b1_out},
            )

        block.append_op(
            type="elementwise_add",
            inputs={"X": b1_out, "Y": b2},
            outputs={"Out": b2_out},
        )
        block.append_op(
            type="mean", inputs={"X": b2_out}, outputs={"Out": mean_out}
        )
M
mapingshuo 已提交
786

787
        if return_input:
788
            return mul_x, mul_out, b1_out, b2_out, mean_out
M
mapingshuo 已提交
789 790 791 792 793
        return mul_out, b1_out, b2_out, mean_out

    def test_no_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
794 795 796 797
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
M
mapingshuo 已提交
798 799 800 801 802 803
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
821 822 823 824

    def test_one_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
825 826 827 828
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
M
mapingshuo 已提交
829 830 831 832 833 834
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "mul",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
853 854 855 856

    def test_str_checkpoints(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
857 858 859 860
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
861 862 863 864 865 866
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out.name])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "mul",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
885 886 887 888

    def test_multi_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
889 890 891 892
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
M
mapingshuo 已提交
893 894 895 896 897 898
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add",
                "elementwise_add_grad",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
917 918 919 920

    def test_adjacent_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
921 922 923 924
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
M
mapingshuo 已提交
925 926 927 928 929 930
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_out, b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 12)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
948

949 950 951
    def test_out_of_order_checkpoint(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        self.assertEqual(len(mean_out.block.ops), 4)
952 953 954 955
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
956 957 958 959 960 961
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b2_out, mul_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 13)
962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add",
                "elementwise_add_grad",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
980 981 982 983

    def test_input_as_checkpoints(self):
        mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True)
        self.assertEqual(len(mean_out.block.ops), 4)
984 985 986 987
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            ["mul", "elementwise_add", "elementwise_add", "mean"],
        )
988 989 990 991 992 993
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([mul_x, b2_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 14)
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "mul",
                "elementwise_add",
                "elementwise_add_grad",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
1013

M
mapingshuo 已提交
1014 1015 1016 1017 1018 1019
    def test_apply_gradients(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        # apply backward
1020 1021 1022 1023 1024 1025
        params_grads = recompute_optimizer.backward(
            mean_out,
            startup_program=None,
            parameter_list=None,
            no_grad_set=None,
        )
M
mapingshuo 已提交
1026 1027 1028 1029 1030 1031 1032

        # apply gradient
        program = mean_out.block.program
        with framework.program_guard(program, None):
            optimize_ops = recompute_optimizer.apply_gradients(params_grads)

        self.assertEqual(len(mean_out.block.ops), 13)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "mul",
                "elementwise_add_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
1051 1052 1053 1054 1055 1056 1057

    def test_load(self):
        mul_out, b1_out, b2_out, mean_out = self.net()
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        try:
1058 1059
            state_dict = {}
            recompute_optimizer.load(state_dict)
M
mapingshuo 已提交
1060 1061 1062
        except NotImplementedError as e:
            self.assertEqual(
                "load function is not supported by Recompute Optimizer for now",
1063 1064
                str(e),
            )
M
mapingshuo 已提交
1065

M
mapingshuo 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074
    def test_dropout(self):
        """
        If there are dropout layers in the forward nets, we should add a
        seed op
        """
        mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True)
        self.assertEqual(len(mean_out.block.ops), 5)
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
1075 1076
            ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"],
        )
M
mapingshuo 已提交
1077 1078 1079 1080 1081 1082
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "seed",
                "dropout",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "mul",
                "dropout",
                "elementwise_add_grad",
                "dropout_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
M
mapingshuo 已提交
1105

1106
    def test_dropout_with_determinate_seed(self):
1107 1108 1109
        mul_out, b1_out, b2_out, mean_out = self.net(
            with_dropout=True, with_seed=True
        )
1110
        self.assertEqual(len(mean_out.block.ops), 6)
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "seed",
                "dropout",
                "elementwise_add",
                "elementwise_add",
                "mean",
            ],
        )
1122 1123 1124 1125 1126 1127
        sgd_optimizer = optimizer.SGD(learning_rate=1.0)
        recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer)
        recompute_optimizer._set_checkpoints([b1_out])
        opts, params_grads = recompute_optimizer.minimize(mean_out)

        self.assertEqual(len(mean_out.block.ops), 17)
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
        self.assertEqual(
            [op.type for op in mean_out.block.ops],
            [
                "mul",
                "seed",
                "dropout",
                "elementwise_add",
                "elementwise_add",
                "mean",
                "fill_constant",
                "mean_grad",
                "elementwise_add_grad",
                "mul",
                "dropout",
                "elementwise_add_grad",
                "dropout_grad",
                "mul_grad",
                "sgd",
                "sgd",
                "sgd",
            ],
        )
1150

1151 1152 1153
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
1154 1155
        is the same as the original var.
        """
1156 1157 1158 1159

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1160
                "y": np.random.randint(2, size=(100, 1)).astype('int64'),
1161 1162 1163
            }

        def mlp(input_x, input_y):
C
ccrrong 已提交
1164 1165
            drop_res = paddle.nn.functional.dropout(
                input_x, p=0.5, name="dropout_with_seed_cpu"
1166
            )
C
Charles-hit 已提交
1167 1168
            prediction = paddle.static.nn.fc(
                x=[drop_res], size=2, activation='softmax'
1169
            )
1170 1171 1172 1173 1174 1175
            cost = paddle.nn.functional.cross_entropy(
                input=prediction,
                label=input_y,
                reduction='none',
                use_softmax=False,
            )
1176
            sum_cost = paddle.mean(cost)
1177 1178 1179 1180 1181 1182 1183
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1184 1185 1186
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32'
                )
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CPUPlace()
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
1198 1199 1200 1201 1202 1203 1204 1205
                drop_vec = exe.run(
                    feed=feed_data,
                    program=fluid.default_main_program(),
                    fetch_list=[
                        "dropout_with_seed_cpu.tmp_1",
                        "dropout_with_seed_cpu.tmp_1.subprog_0",
                    ],
                )
1206 1207 1208
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())


1209 1210 1211
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221
class TestRecomputeOptimizerCUDA(unittest.TestCase):
    def test_dropout_with_seed(self):
        """
        when we recompute a dropout op, make sure that the recomputed one
        is the same as the original var.
        """

        def gen_data():
            return {
                "x": np.random.random(size=(100, 3)).astype('float32'),
1222
                "y": np.random.randint(2, size=(100, 1)).astype('int64'),
1223 1224 1225
            }

        def mlp(input_x, input_y):
C
ccrrong 已提交
1226 1227
            drop_res = paddle.nn.functional.dropout(
                input_x, p=0.5, name="dropout_with_seed_gpu"
1228
            )
C
Charles-hit 已提交
1229 1230
            prediction = paddle.static.nn.fc(
                x=[drop_res], size=2, activation='softmax'
1231
            )
1232 1233 1234 1235 1236 1237
            cost = paddle.nn.functional.cross_entropy(
                input=prediction,
                label=input_y,
                reduction='none',
                use_softmax=False,
            )
1238
            sum_cost = paddle.mean(cost)
1239 1240 1241 1242 1243 1244 1245
            return drop_res, prediction, sum_cost

        main_program = Program()
        startup_program = Program()
        scope = fluid.Scope()
        with fluid.scope_guard(scope):
            with program_guard(main_program, startup_program):
1246 1247 1248
                input_x = fluid.layers.data(
                    name="x", shape=[3], dtype='float32'
                )
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
                input_y = fluid.layers.data(name="y", shape=[1], dtype='int64')
                drop_res, prediction, cost = mlp(input_x, input_y)
                sgd = fluid.optimizer.Adam(learning_rate=0.01)
                sgd = fluid.optimizer.RecomputeOptimizer(sgd)
                sgd._set_checkpoints([prediction])
                sgd.minimize(cost)

                place = fluid.CUDAPlace(0)
                exe = fluid.Executor(place)
                exe.run(fluid.default_startup_program())
                feed_data = gen_data()
1260 1261 1262 1263 1264 1265 1266 1267
                drop_vec = exe.run(
                    feed=feed_data,
                    program=fluid.default_main_program(),
                    fetch_list=[
                        "dropout_with_seed_gpu.tmp_1",
                        "dropout_with_seed_gpu.tmp_1.subprog_0",
                    ],
                )
1268 1269
                self.assertEqual(drop_vec[0].tolist(), drop_vec[1].tolist())

M
mapingshuo 已提交
1270

1271 1272 1273 1274
class TestGradientMergeOptimizer(unittest.TestCase):
    def net(self):
        program = framework.Program()
        block = program.global_block()
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x"
        )
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y"
        )
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out"
        )
        b1 = block.create_parameter(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1"
        )
        b1_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="b1_out"
        )
        mean_out = block.create_var(
            dtype="float32", shape=[1], lod_level=0, name="mean.out"
        )
        block.append_op(
            type="mul",
            inputs={"X": mul_x, "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1},
        )
        block.append_op(
            type="elementwise_add",
            inputs={"X": mul_out, "Y": b1},
            outputs={"Out": b1_out},
        )
        block.append_op(
            type="mean", inputs={"X": b1_out}, outputs={"Out": mean_out}
        )
1307 1308
        return mean_out

1309 1310 1311
    def test_program_desc(
        self,
    ):
1312 1313 1314 1315 1316
        cost = self.net()
        main_program = cost.block.program
        init_program = framework.Program()
        self.assertEqual(main_program.num_blocks, 1)
        self.assertEqual(len(cost.block.ops), 3)
1317 1318 1319 1320
        self.assertEqual(
            [op.type for op in cost.block.ops],
            ["mul", "elementwise_add", "mean"],
        )
1321 1322 1323 1324 1325 1326

        opt = optimizer.SGD(learning_rate=1.0)
        opt = optimizer.GradientMergeOptimizer(opt, k_steps=4)
        with framework.program_guard(main_program, init_program):
            ops, params_grads = opt.minimize(cost)

1327
        self.assertEqual(main_program.num_blocks, 2)
1328 1329

        # main block
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        self.assertEqual(len(cost.block.ops), 13)
        self.assertEqual(
            [op.type for op in cost.block.ops],
            [
                'mul',
                'elementwise_add',
                'mean',
                'fill_constant',
                'mean_grad',
                'elementwise_add_grad',
                'mul_grad',
                'increment',  # step += 1
                'elementwise_mod',  # step %= k_steps
                'equal',  # cond_var == (step == 0)
                'elementwise_add',
                'elementwise_add',
                'conditional_block',
1347 1348
            ],
        )
1349

1350 1351
        # optimize block
        self.assertEqual(len(main_program.block(1).ops), 6)
1352 1353
        self.assertEqual(
            [op.type for op in main_program.block(1).ops],
1354 1355
            ['scale', 'scale', 'sgd', 'sgd', 'fill_constant', 'fill_constant'],
        )
1356 1357


L
Leo Chen 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366
class TestOptimizerDtype(unittest.TestCase):
    '''
    The dtype of optimizer should be inferred by parameters, and the learning rate
    is cteated with the same dtype.
    '''

    def check_with_dtype(self, dtype):
        class MyLayer(paddle.nn.Layer):
            def __init__(self, dtype):
1367
                super().__init__()
L
Leo Chen 已提交
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
                self._w = self.create_parameter([2, 3], dtype=dtype)
                self._b = self.create_parameter([2, 3], dtype=dtype)

            def forward(self, x):
                return x * self._w + self._b

        with paddle.fluid.dygraph.guard():
            model = MyLayer(dtype)
            x = paddle.rand([10, 2, 3], dtype=dtype)
            loss = model(x)
            adam = paddle.optimizer.Adam(parameters=model.parameters())
            loss.backward()
            adam.step()
            self.assertEqual(adam._dtype, convert_np_dtype_to_dtype_(dtype))

    def test_float64(self):
        self.check_with_dtype('float64')

    def test_float32(self):
        self.check_with_dtype('float32')


1390 1391
class TestMasterWeightSaveForFP16(unittest.TestCase):
    '''
1392
    For Amp-O2, some optimizer(Momentum, Adam ...) will create master weights for parameters to improve the accuracy.
1393 1394 1395
    Master weights will be saved by optimizer::state_dict.
    '''

1396 1397 1398 1399 1400 1401
    def setUp(self):
        self.temp_dir = tempfile.TemporaryDirectory()

    def tearDown(self):
        self.temp_dir.cleanup()

1402 1403 1404 1405 1406 1407
    def check_with_opt_state_dict(self, use_save_load=True):
        paddle.seed(100)
        numpy.random.seed(100)

        class SimpleNet(paddle.nn.Layer):
            def __init__(self, input_size, output_size):
1408
                super().__init__()
1409 1410 1411 1412 1413 1414
                self.linears = paddle.nn.LayerList(
                    [
                        paddle.nn.Linear(input_size, output_size)
                        for i in range(1)
                    ]
                )
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

            def forward(self, x):
                for i, l in enumerate(self.linears):
                    x = self.linears[i](x)
                return x

        input_size = 2  # 设为较大的值
        output_size = 2  # 设为较大的值
        batch_size = 2  # batch_size 为8的倍数
        nums_batch = 10

        class RandomDataset(Dataset):
            def __init__(self, num_samples):
                self.num_samples = num_samples

            def __getitem__(self, idx):
                data = numpy.random.random([input_size]).astype('float16')
                label = numpy.random.random([output_size]).astype('float16')
                return data, label

            def __len__(self):
                return self.num_samples

        dataset = RandomDataset(nums_batch * batch_size)
1439 1440 1441 1442 1443 1444 1445
        loader = paddle.io.DataLoader(
            dataset,
            batch_size=batch_size,
            shuffle=False,
            drop_last=True,
            num_workers=0,
        )
1446 1447 1448

        mse = paddle.nn.MSELoss()
        model = SimpleNet(input_size, output_size)  # 定义模型
1449 1450 1451 1452 1453
        optimizer = paddle.optimizer.Momentum(
            learning_rate=0.0001,
            parameters=model.parameters(),
            multi_precision=True,
        )  # 定义优化器
1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467
        scaler = paddle.amp.GradScaler(init_loss_scaling=1024)
        model = paddle.amp.decorate(models=model, level='O2')

        for i, (data, label) in enumerate(loader):
            with paddle.amp.auto_cast(level='O2'):
                output = model(data)
                loss = mse(output, label)
            scaled = scaler.scale(loss)
            scaled.backward()
            scaler.step(optimizer)
            scaler.update()
            optimizer.clear_grad(set_to_zero=False)

            if use_save_load and i == 5:
1468 1469 1470 1471 1472 1473
                model_path = os.path.join(self.temp_dir.name, "model.pdparams")
                optimizer_path = os.path.join(self.temp_dir.name, "opt.pdopt")
                paddle.save(model.state_dict(), model_path)
                paddle.save(optimizer.state_dict(), optimizer_path)
                model.set_state_dict(paddle.load(model_path))
                optimizer.set_state_dict(paddle.load(optimizer_path))
1474 1475 1476 1477 1478 1479 1480

        return loss.numpy()

    def test_with_state_dict(self):
        if core.is_compiled_with_cuda():
            with fluid.dygraph.guard():
                out_use_state_dict = self.check_with_opt_state_dict(
1481 1482
                    use_save_load=True
                )
1483
                out_no_state_dict = self.check_with_opt_state_dict(
1484 1485
                    use_save_load=False
                )
1486
            np.testing.assert_array_equal(out_use_state_dict, out_no_state_dict)
1487 1488


Q
Qiao Longfei 已提交
1489
if __name__ == '__main__':
1490
    paddle.enable_static()
Q
Qiao Longfei 已提交
1491
    unittest.main()