test_fleet_base_3.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16 17
import unittest

18 19 20
import paddle
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker
21

22
paddle.enable_static()
23 24


25
class TestFleetBase_1(unittest.TestCase):
26 27 28 29
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
30 31 32
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
33 34

    def test_collective_minimize(self):
35 36 37
        input_x = paddle.fluid.layers.data(
            name="x", shape=[32], dtype='float32'
        )
38 39
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

C
Charles-hit 已提交
40 41 42
        fc_1 = paddle.static.nn.fc(x=input_x, size=64, activation='tanh')
        fc_2 = paddle.static.nn.fc(x=fc_1, size=64, activation='tanh')
        prediction = paddle.static.nn.fc(x=[fc_2], size=2, activation='softmax')
43 44
        cost = paddle.nn.functional.cross_entropy(
            input=prediction, label=input_y, reduction='none', use_softmax=False
45
        )
46
        avg_cost = paddle.mean(x=cost)
47 48 49 50

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
        strategy = fleet.DistributedStrategy()
J
Jiawei Wang 已提交
51
        optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.001)
52 53 54 55
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)


56 57 58 59 60
class TestFleetBase(unittest.TestCase):
    def setUp(self):
        os.environ["POD_IP"] = "127.0.0.1"
        os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001"
        os.environ["PADDLE_TRAINERS_NUM"] = "2"
61 62 63
        os.environ[
            "PADDLE_PSERVERS_IP_PORT_LIST"
        ] = "127.0.0.1:36001,127.0.0.2:36001"
64 65

    def test_fleet_get_applied_optimizer(self):
66 67 68
        input_x = paddle.fluid.layers.data(
            name="x", shape=[32], dtype='float32'
        )
69 70
        input_y = paddle.fluid.layers.data(name="y", shape=[1], dtype='int64')

C
Charles-hit 已提交
71 72 73
        fc_1 = paddle.static.nn.fc(x=input_x, size=64, activation='tanh')
        fc_2 = paddle.static.nn.fc(x=fc_1, size=64, activation='tanh')
        prediction = paddle.static.nn.fc(x=[fc_2], size=2, activation='softmax')
74 75
        cost = paddle.nn.functional.cross_entropy(
            input=prediction, label=input_y, reduction='none', use_softmax=False
76
        )
77
        avg_cost = paddle.mean(x=cost)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

        fleet.init(is_collective=True)

        meta_list = fleet._get_applied_meta_list()
        graph_list = fleet._get_applied_graph_list()
        # not called minimize function
        self.assertEqual(len(meta_list), 0)
        self.assertEqual(len(graph_list), 0)

        strategy = fleet.DistributedStrategy()
        optimizer = paddle.fluid.optimizer.SGD(learning_rate=0.001)
        optimizer = fleet.distributed_optimizer(optimizer, strategy=strategy)
        optimizer.minimize(avg_cost)

        meta_list = fleet._get_applied_meta_list()
        graph_list = fleet._get_applied_graph_list()
        self.assertEqual(len(meta_list), 0)
        self.assertEqual(len(graph_list), 1)


98 99
if __name__ == "__main__":
    unittest.main()