datamover_primitives.h 29.4 KB
Newer Older
F
Feng Xing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16
#ifdef PADDLE_WITH_CUDA
N
niuliling123 已提交
17 18
#include <cuda.h>
#include <cuda_fp16.h>
19 20 21 22
#endif
#ifdef PADDLE_WITH_HIP
#include <hip/hip_fp16.h>
#endif
23
#include "paddle/phi/core/ddim.h"
F
Feng Xing 已提交
24

25
namespace phi {
26
namespace kps {
N
niuliling123 已提交
27 28 29 30 31 32 33 34
namespace details {

#define INT_BITS 32

template <typename T, int VecSize>
struct alignas(sizeof(T) * VecSize) VectorType {
  T val[VecSize];
};
35 36 37 38 39 40 41
/**
 * Fast division : Replace division in CUDA with multiplication to improve
 * kernel performance.
 * 1. Complete the division calculation on the CPU, and record the calculation
 * results by using the divider and shift_val.
 * 2. Set the divisor on the GPU through Div() to complete the calculation.
 */
N
niuliling123 已提交
42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
struct FastDivMod {
  // 1st value represents the result of input number divides by recorded divisor
  // 2nd value represents the result of input number modulo by recorded divisor
  using DivModT = VectorType<uint32_t, 2>;

  FastDivMod() {}
  HOSTDEVICE FastDivMod(uint32_t d) : divisor(d) {
    static_assert(sizeof(unsigned int) == 4,
                  "Only Support 32-bit unsigned int.");

    for (shift_val = 0; shift_val < INT_BITS; ++shift_val) {
      auto shift_limit = 1 << shift_val;
      if (shift_limit >= divisor) break;
    }
    uint64_t long_one = 1;
    uint64_t temp_div =
        ((long_one << INT_BITS) * ((long_one << shift_val) - divisor)) /
            divisor +
        1;
    multiplier = temp_div;
  }

  __device__ __forceinline__ uint32_t Div(uint32_t n) const {
    uint32_t t = __umulhi(n, multiplier);
    return (t + n) >> shift_val;
  }

  __device__ __forceinline__ DivModT Divmod(uint32_t n) const {
    uint32_t q = Div(n);
    DivModT result = {q, n - q * divisor};
    return result;
  }

  int32_t divisor;
  int32_t shift_val;
  uint32_t multiplier;
};

80 81 82 83 84
/**
 * Configuration of broadcast. Calculate the input data index according to the
 * index of the output data. if input or output shape is [dim0, dim1] then dims
 * must be [dim1, dim0].
 */
N
niuliling123 已提交
85
struct BroadcastConfig {
86
  FastDivMod divmoders[phi::DDim::kMaxRank];
87
  uint32_t strides[phi::DDim::kMaxRank];
88
  int kDims;
N
niuliling123 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
  HOSTDEVICE BroadcastConfig() {}

  HOSTDEVICE BroadcastConfig(const std::vector<int64_t>& out_dims,
                             const std::vector<int64_t>& in_dims,
                             int dim_size) {
    std::vector<uint32_t> strides_in;
    std::vector<FastDivMod> divmoders_in;
    // for divmoders
    divmoders_in.resize(dim_size);
    for (int i = 0; i < dim_size; ++i) {
      divmoders_in[i] = FastDivMod(out_dims[i]);
    }
    // for strides
    strides_in.resize(dim_size, 1);
    for (int i = 0; i < dim_size; ++i) {
      strides_in[i] = in_dims[i] == 1 ? 0 : strides_in[i];
105 106 107 108 109 110
      strides_in[i] = (i != 0 && strides_in[i] != 0)
                          ? std::accumulate(in_dims.begin(),
                                            in_dims.begin() + i,
                                            1,
                                            std::multiplies<int64_t>())
                          : strides_in[i];
N
niuliling123 已提交
111
    }
112
    kDims = dim_size;
N
niuliling123 已提交
113 114 115 116 117
    memcpy(strides, strides_in.data(), kDims * sizeof(uint32_t));
    memcpy(divmoders, divmoders_in.data(), kDims * sizeof(FastDivMod));
  }
};

118 119 120 121 122 123 124 125
template <typename T>
__device__ __forceinline__ void WriteData(T* dst,
                                          T* __restrict__ src,
                                          int num) {
  for (int i = 0; i < num; i++) {
    dst[i] = src[i];
  }
}
126 127 128 129 130 131 132 133 134

template <typename T>
__device__ __forceinline__ void ReadData(T* dst,
                                         const T* __restrict__ src,
                                         int num) {
  for (int i = 0; i < num; i++) {
    dst[i] = src[i];
  }
}
N
niuliling123 已提交
135 136 137
#undef INT_BITS
}  // namespace details

138
/**
139 140
 * @brief Read 2D data from global memory to register according to Tx type, and
 * store it as Ty type into register.
141 142 143 144 145 146 147
 *
 * @template paraments
 * Tx: The type of data stored in the global memory.
 * Ty: The type of data that needs to be stored in registers.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
148
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
149 150 151 152 153
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
154
 * @param:
155
 * dst: The register pointer of the thread, the size is NX * NY.
156 157 158 159 160 161 162
 * src: The data pointer of the current block.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
163
 */
164 165 166 167 168
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
169
          bool IsBoundary = false>
170 171 172 173 174 175
__device__ __forceinline__ void ReadData(Ty* dst,
                                         const Tx* __restrict__ src,
                                         int size_nx,
                                         int size_ny,
                                         int stride_nx,
                                         int stride_ny) {
176
  int thread_offset = threadIdx.x;
177
  int left_size_nx = size_nx - thread_offset;
178 179 180 181

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
182 183
      if (left_size_nx > 0) {
        dst[0] = static_cast<Ty>(src[thread_offset]);
184 185
      }
    } else {
186
      dst[0] = static_cast<Ty>(src[thread_offset]);
187 188
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
N
niuliling123 已提交
189
#pragma unroll
190 191
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
192
        if (idy * stride_ny >= size_ny) {
193 194 195
          break;
        }
      }
196
      dst[idy] = static_cast<Ty>(src[thread_offset + idy * stride_ny]);
197 198 199 200 201
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
202
        if (idx * stride_nx >= left_size_nx) {
203 204 205
          break;
        }
      }
206
      dst[idx] = static_cast<Ty>(src[thread_offset + idx * stride_nx]);
207 208 209 210 211
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
212
        if (idx * stride_nx >= left_size_nx) {
213 214 215 216 217 218
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
219
          if (idy * stride_ny >= size_ny) {
220 221 222
            break;
          }
        }
223 224
        dst[idy * NX + idx] = static_cast<Ty>(
            src[thread_offset + idx * stride_nx + idy * stride_ny]);
225
      }
N
niuliling123 已提交
226 227 228 229
    }
  }
}

230 231 232 233 234 235 236 237 238 239 240
/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: Initial value.
 */
241 242 243 244 245 246 247 248
template <typename T, int NX>
__device__ __forceinline__ void Init(T* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

249 250 251 252 253 254 255 256
template <typename T, int NX>
__device__ __forceinline__ void Init(T* dst, T init_data, int read_lens) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    dst[i] = init_data;
  }
}

257 258 259 260 261 262 263 264 265 266 267 268
/**
 * The difference from the above function is that
 * it supports different data types of inputs.
 */
template <typename T, typename ArgsT, int Index, int NX>
__device__ __forceinline__ void Init(ArgsT* dst, T init_data) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    std::get<Index>(dst[i]) = init_data;
  }
}

269
/**
270
 * @brief Read 1D data from global memory to register. When IsBoundary = true
271 272 273 274
 * and (NX % 4 == 0 or Nx % 2 == 0), vectorized load data will be used to
 * improve memory access efficiency.
 *
 * @template paraments
275 276 277
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
278
 * BlockSize: Identifies the current device thread index method. For GPU,
279
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
280 281
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
282
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
283 284
 * crossing the boundary.
 *
285
 * @param:
286
 * dst: The register pointer of the thread, the size is NX * NY.
287
 * src: The data pointer of the current block.
288
 * size: The current block needs to load size data continuously.
289 290
 */
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
291 292
__device__ __forceinline__ void ReadData(T* dst,
                                         const T* __restrict__ src,
293 294
                                         int num) {
  if (IsBoundary) {  // blockDim.x * NX > num
295
    int thread_offset = threadIdx.x * NX;
296 297
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
298 299
      if (idx + thread_offset < num) {
        dst[idx] = src[thread_offset + idx];
300 301 302
      }
    }
  } else {  // blockDim,x * NX < num
303 304
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
305
    int thread_offset = threadIdx.x * kVectorsPerThread;
N
niuliling123 已提交
306

307
    using VecType = details::VectorType<T, kVectorSize>;
N
niuliling123 已提交
308
    const VecType* vec_input = reinterpret_cast<const VecType*>(src);
309 310
    VecType vec_temp[kVectorsPerThread];

N
niuliling123 已提交
311
#pragma unroll
312
    for (int i = 0; i < kVectorsPerThread; ++i) {
313
      vec_temp[i] = vec_input[thread_offset + i];
314 315 316 317
#pragma unroll
      for (int idx = 0; idx < NX; ++idx) {
        dst[idx] = *(reinterpret_cast<T*>(vec_temp) + idx);
      }
N
niuliling123 已提交
318 319 320 321
    }
  }
}

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
__device__ __forceinline__ void ReadData(T* dst,
                                         const T* __restrict__ src,
                                         int num,
                                         int read_lens) {
  if (IsBoundary) {  // blockDim.x * NX > num
    int thread_offset = threadIdx.x * NX;
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        dst[idx] = src[thread_offset + idx];
      }
    }
  } else {  // blockDim,x * NX < num
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
    int thread_offset = threadIdx.x * kVectorsPerThread;

    using VecType = details::VectorType<T, kVectorSize>;
    const VecType* vec_input = reinterpret_cast<const VecType*>(src);
    VecType vec_temp[kVectorsPerThread];

#pragma unroll
    for (int i = 0; i < kVectorsPerThread; ++i) {
      vec_temp[i] = vec_input[thread_offset + i];
#pragma unroll
      for (int idx = 0; idx < NX; ++idx) {
        dst[idx] = *(reinterpret_cast<T*>(vec_temp) + idx);
      }
    }
  }
}
354 355 356
/**
 * @brief Read 1D data from global memory to register. The difference
 * from the above function is that it supports different data types of inputs.
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
 *
 * @template paraments
 * T: The type of data.
 * NX: Each thread load NX data from global memory continuously.
 * NY: Each thread need to load NY rows, only NY = 1 was supported.
 * ArgsT: The Type if dst, ArgsT can be std::tuple<T> or std::tuple<Args>
 * Index: The index of data stored in dst.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * IsBoundary: Whether to make an out-of-bounds judgment on access to memory.
 * When the number of data processed by this block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The data pointer of the current block.
 * size: The current block needs to load size data continuously.
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
 */
template <typename T,
          int NX,
          int NY,
          int BlockSize,
          typename ArgsT,
          int Index,
          bool IsBoundary = false>
__device__ __forceinline__ void ReadData(ArgsT* dst,
                                         const T* __restrict__ src,
                                         int num) {
  if (IsBoundary) {  // blockDim.x * NX > num
    int thread_offset = threadIdx.x * NX;
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (idx + thread_offset < num) {
        std::get<Index>(dst[idx]) = src[thread_offset + idx];
      }
    }
  } else {  // blockDim,x * NX < num
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
    int thread_offset = threadIdx.x * kVectorsPerThread;

    using VecType = details::VectorType<T, kVectorSize>;
    const VecType* vec_input = reinterpret_cast<const VecType*>(src);
    VecType vec_temp[kVectorsPerThread];

#pragma unroll
    for (int i = 0; i < kVectorsPerThread; ++i) {
      vec_temp[i] = vec_input[thread_offset + i];
#pragma unroll
      for (int idx = 0; idx < NX; ++idx) {
        std::get<Index>(dst[idx]) = *(reinterpret_cast<T*>(vec_temp) + idx);
      }
    }
  }
}

414
/**
415
 * @brief Read 2D data from global memory to registers with broadcast form.
416 417 418 419 420 421
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
422
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
423 424 425
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
426
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
427 428
 * crossing the boundary.
 *
N
niuliling123 已提交
429
 * @param:
430
 * dst: The register pointer of the thread, the size is NX * NY.
431 432
 * src: The original input data pointer of this kernel.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX.
433
 * config: Calculation configuration of broadcast. It is used to calculate the
434
 * coordinate mapping relationship between output data and input data.
435
 * total_num_output: Total number of original output.
436 437
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
N
niuliling123 已提交
438
 */
439
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
N
niuliling123 已提交
440
__device__ __forceinline__ void ReadDataBc(
441 442 443
    T* dst,
    const T* __restrict__ src,
    uint32_t block_offset,
444
    const details::BroadcastConfig& config,
445 446
    int total_num_output,
    int stride_nx,
447
    int stride_ny) {
448
  uint32_t thread_offset = block_offset + threadIdx.x;
449
  uint32_t index_src = 0;
N
niuliling123 已提交
450 451 452 453 454

#pragma unroll
  for (int ny = 0; ny < NY; ++ny) {
#pragma unroll
    for (uint32_t nx = 0; nx < NX; ++nx) {
455 456
      uint32_t index_output = thread_offset + ny * stride_ny + nx * stride_nx;
      index_src = 0;
457
      if (IsBoundary) {
458
        if (index_output >= total_num_output) {
459
          break;
N
niuliling123 已提交
460 461
        }
      }
462
#pragma unroll
463 464
      for (int i = 0; i < phi::DDim::kMaxRank; ++i) {
        if (i >= config.kDims) break;
465 466 467
        auto fast_divmoder = config.divmoders[i].Divmod(index_output);
        index_output = fast_divmoder.val[0];
        index_src += fast_divmoder.val[1] * config.strides[i];
468
      }
469
      dst[nx + ny * NX] = src[index_src];
N
niuliling123 已提交
470 471 472 473
    }
  }
}

474
/**
475
 * @brief Read 2D data from global memory to register with reduce form.
476 477
 *
 * @template paraments
478
 * T: The type of data.
479 480 481
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
482
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
483 484 485
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
486
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
487 488
 * crossing the boundary.
 *
489
 * @param:
490
 * dst: The register pointer of the thread, the size is NX * NY.
491 492
 * src: The input data pointer of this block.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX.
493
 * index_cal: Calculation configuration of Reduce. It is used to calculate the
494
 * coordinate mapping relationship between output data and input data.
495
 * size_nx: The current block needs to load size_nx columns of data, this
496 497 498
 * parameter will participate in the calculation when isboundary = true.
 * size_ny: The current block needs to load size_ny rows of data, this parameter
 * will participate in the calculation when isboundary = true.
499
 * will be used when IsBoundary = true.
500 501
 * stride_nx: Each read one element stride stride_nx columns.
 * stride_ny: Each read one element stride stride_ny raws.
502 503
 * reduce_last_dim: Used to indicate whether the dimension of reduce contains
 * the lowest dimension.
504
 */
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
          int Rank,
          typename IndexCal,
          typename Functor,
          bool IsBoundary = false>
__device__ __forceinline__ void ReadDataReduce(Ty* dst,
                                               const Tx* __restrict__ src,
                                               int block_offset,
                                               const IndexCal& index_cal,
                                               int size_nx,
                                               int size_ny,
                                               int stride_nx,
                                               int stride_ny,
                                               Functor func,
                                               bool reduce_last_dim) {
524
  int thread_offset = 0;
525
  int left_idx = 0;
526
  if (reduce_last_dim) {
527 528
    thread_offset = threadIdx.x;
    left_idx = threadIdx.y;
529
  } else {
530 531
    thread_offset = threadIdx.y;
    left_idx = threadIdx.x;
532 533 534
  }

  if (NX == 1) {
N
niuliling123 已提交
535
#pragma unroll
536 537
    for (int ny = 0; ny < NY; ++ny) {
      if (IsBoundary) {
538
        if (thread_offset >= size_ny) {
539 540 541
          break;
        }
      }
542
      uint32_t index_src = index_cal(thread_offset + block_offset);
543
      dst[ny] = static_cast<Ty>(func(src[index_src]));
544
      thread_offset += stride_ny;
545 546 547 548 549 550 551
    }
  } else {
#pragma unroll
    for (int nx = 0; nx < NX; ++nx) {
#pragma unroll
      for (int ny = 0; ny < NY; ++ny) {
        if (IsBoundary) {
552 553
          if ((thread_offset >= size_ny) ||
              (left_idx + nx * stride_nx >= size_nx)) {
554 555 556
            break;
          }
        }
557
        uint32_t index_src = index_cal(thread_offset + block_offset);
558
        dst[nx + ny * NX] = static_cast<Ty>(func(src[index_src]));
559
        thread_offset += stride_ny;
560
      }
N
niuliling123 已提交
561 562
    }
  }
F
Feng Xing 已提交
563
}
N
niuliling123 已提交
564

565
/**
566 567 568 569 570 571
 * @brief Write 2D data from registers to global memory. When IsBoundary = true
 * and (NX % 4 == 0 or Nx % 2 == 0), the data will be vectorized to improve the
 * data loading efficiency
 *
 * @template paraments
 * T: The type of data.
572
 * NX: The number of data continuously writed by each thread.
573 574
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For GPU,
575
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
576 577
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
578
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
579 580
 * crossing the boundary.
 *
581
 * @param:
582 583 584
 * dst: The data pointer of the current block.
 * src: The register pointer, the size is NX * NY.
 * size: The current block needs to load size elements continuously.
585 586
 */
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
587 588
__device__ __forceinline__ void WriteData(T* dst,
                                          T* __restrict__ src,
589 590
                                          int num) {
  if (IsBoundary) {
591
    int thread_offset = threadIdx.x * NX;
592 593
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
594 595
      if ((thread_offset + idx) < num) {
        dst[thread_offset + idx] = src[idx];
596 597
      }
    }
N
niuliling123 已提交
598 599
  } else {
    // Vector type
600 601
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;
602

603
    int thread_offset = threadIdx.x * kVectorsPerThread;
604 605 606
    using VecType = details::VectorType<T, kVectorSize>;
    VecType* vec_dst = reinterpret_cast<VecType*>(dst);
    VecType vec_temp[kVectorsPerThread];
N
niuliling123 已提交
607
#pragma unroll
608
    for (int idx = 0; idx < kVectorsPerThread; ++idx) {
N
niuliling123 已提交
609
      vec_temp[idx] = *(reinterpret_cast<VecType*>(src) + idx);
610
      vec_dst[thread_offset + idx] = vec_temp[idx];
N
niuliling123 已提交
611 612
    }
  }
F
Feng Xing 已提交
613
}
N
niuliling123 已提交
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
__device__ __forceinline__ void WriteData(T* dst,
                                          T* __restrict__ src,
                                          int num,
                                          int read_lens) {
  if (IsBoundary) {
    int thread_offset = threadIdx.x * NX;
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if ((thread_offset + idx) < num) {
        dst[thread_offset + idx] = src[idx];
      }
    }
  } else {
    // Vector type
    constexpr int kVectorSize = (NX % 4 == 0) ? 4 : (NX % 2 == 0) ? 2 : 1;
    constexpr int kVectorsPerThread = NX / kVectorSize;

    int thread_offset = threadIdx.x * kVectorsPerThread;
    using VecType = details::VectorType<T, kVectorSize>;
    VecType* vec_dst = reinterpret_cast<VecType*>(dst);
    VecType vec_temp[kVectorsPerThread];
#pragma unroll
    for (int idx = 0; idx < kVectorsPerThread; ++idx) {
      vec_temp[idx] = *(reinterpret_cast<VecType*>(src) + idx);
      vec_dst[thread_offset + idx] = vec_temp[idx];
    }
  }
}

645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/**
 * @brief Write 2D data from register to global memory according to Tx type, and
 * store it as Ty type.
 *
 * @template paraments
 * Tx: The type of data that needs to be stored in registers.
 * Ty: The type of data that stored in the global memory.
 * NX: The number of data columns loaded by each thread.
 * NY: The number of data rows loaded by each thread.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The data pointer of the current block.
 * src: The register pointer of the thread, the size is NX * NY.
 * size_nx: The maximum offset of the current block is size_nx elements in the
 * lowest dimension. The parameters are only calculated when isboundary = true.
 * size_ny: The maximum offset of the current block is size_ny elements in the
 * first dimension. The parameters are only calculated when isboundary = true.
 * stride_nx: Each read one element stride stride_nx elements in the last dim.
 * stride_ny: Each read one element stride stride_ny elements in the first dim.
 */
671 672 673 674 675
template <typename Tx,
          typename Ty,
          int NX,
          int NY,
          int BlockSize,
676
          bool IsBoundary = false>
677 678 679 680 681 682
__device__ __forceinline__ void WriteData(Ty* dst,
                                          const Tx* __restrict__ src,
                                          int size_nx,
                                          int size_ny,
                                          int stride_nx,
                                          int stride_ny) {
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
  int thread_offset = threadIdx.x;
  int left_size_nx = size_nx - thread_offset;

  // Each branch is added for better performance
  if (NX == 1 && NY == 1) {  // for NX == 1 and NY == 1
    if (IsBoundary) {
      if (left_size_nx > 0) {
        dst[thread_offset] = static_cast<Ty>(src[0]);
      }
    } else {
      dst[thread_offset] = static_cast<Ty>(src[0]);
    }
  } else if (NX == 1) {  // for NX == 1 and NY != 1
#pragma unroll
    for (int idy = 0; idy < NY; ++idy) {
      if (IsBoundary) {
        if (idy * stride_ny >= size_ny) {
          break;
        }
      }
      dst[thread_offset + idy * stride_ny] = static_cast<Ty>(src[idy]);
    }
  } else if (NY == 1) {  // for NY == 1 and NX != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
      dst[thread_offset + idx * stride_nx] = static_cast<Ty>(src[idx]);
    }
  } else {  // for NX != 1 and NY != 1
#pragma unroll
    for (int idx = 0; idx < NX; ++idx) {
      if (IsBoundary) {
        if (idx * stride_nx >= left_size_nx) {
          break;
        }
      }
#pragma unroll
      for (int idy = 0; idy < NY; ++idy) {
        if (IsBoundary) {
          if (idy * stride_ny >= size_ny) {
            break;
          }
        }
        dst[thread_offset + idx * stride_nx + idy * stride_ny] =
            static_cast<Ty>(src[idy * NX + idx]);
      }
    }
  }
}

/**
 * @brief Initialize register with init_data.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
template <typename T, int NX, bool IsBoundary = false>
__device__ __forceinline__ void Init(T* dst, T* init_data, int num) {
#pragma unroll
  for (int i = 0; i < NX; i++) {
    if (IsBoundary) {
      if (i >= num) {
        break;
      }
    }
    dst[i] = init_data[i];
  }
}

/**
 * @brief Read 1D data from global memory to register with broadcast form.
 *
 * @template paraments
 * T: The type of data stored in the global memory.
 * NX: The number of data continuously loaded by each thread.
 * NY: The number of data rows loaded by each thread, only NY = 1 was supported.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 * Rank: The shape size of out. eg in[1, 35], out[32, 35] then shape size is 2.
 * IsBoundary: Indicates whether to perform block access storage out-of-bounds
 * judgment. When the number of data processed by the block is less than
 * NX x NY x blockDim.x, boundary judgment is required to avoid memory access
 * crossing the boundary.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX * NY.
 * src: The original input data pointer of kernel.
 * block_offset: The data offset of this block, blockDim.x * blockIdx.x * NX;
 * config: Calculation configuration of broadcast. It is used to calculate the
 * coordinate mapping relationship between output data and input data.
 * total_num_output: Total number of original output.
 */
784
template <typename T, int NX, int NY, int BlockSize, bool IsBoundary = false>
785 786 787 788
__device__ __forceinline__ void ReadDataBc(
    T* dst,
    const T* __restrict__ src,
    uint32_t block_offset,
789
    const details::BroadcastConfig& config,
790
    int total_num_output,
791
    int read_lens = NX) {
792 793 794 795 796 797 798 799 800 801 802 803 804
  uint32_t thread_offset = block_offset + threadIdx.x * NX;
  uint32_t index_src = 0;

#pragma unroll
  for (uint32_t nx = 0; nx < NX; ++nx) {
    uint32_t index_output = thread_offset + nx;
    index_src = 0;
    if (IsBoundary) {
      if (index_output >= total_num_output) {
        break;
      }
    }
#pragma unroll
805 806
    for (int i = 0; i < phi::DDim::kMaxRank; ++i) {
      if (i >= config.kDims) break;
807 808 809 810 811 812 813
      auto fast_divmoder = config.divmoders[i].Divmod(index_output);
      index_output = fast_divmoder.val[0];
      index_src += fast_divmoder.val[1] * config.strides[i];
    }
    dst[nx] = src[index_src];
  }
}
814

815 816 817 818 819 820 821 822 823 824 825 826 827 828
/**
 * @brief Initialize register with data index.
 *
 * @template paraments
 * T: Data type of register.
 * NX: Number of data to initialize.
 * NY: Number of data to initialize, NY only can be 1.
 * BlockSize: Identifies the current device thread index method. For GPU,
 * threadIdx.x is used as the thread index. Currently only GPU was supported.
 *
 * @param:
 * dst: The register pointer of the thread, the size is NX.
 * init_data: The register pointer of init data, the size is NX.
 */
829 830 831 832 833 834 835 836 837
template <typename T, int NX, int NY, int BlockSize>
__device__ __forceinline__ void InitWithDataIndex(T* dst, int block_offset) {
  int thread_offset = block_offset + threadIdx.x * NX;
#pragma unroll
  for (int nx = 0; nx < NX; ++nx) {
    dst[nx] = static_cast<T>(thread_offset + nx);
  }
}

838
}  // namespace kps
839
}  // namespace phi