auc_op.cc 5.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/metrics/auc_op.h"
T
typhoonzero 已提交
16 17 18 19

namespace paddle {
namespace operators {

T
update  
typhoonzero 已提交
20
class AucOp : public framework::OperatorWithKernel {
T
typhoonzero 已提交
21 22 23 24
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
武毅 已提交
25
  void InferShape(framework::InferShapeContext *ctx) const override {
26 27
    OP_INOUT_CHECK(ctx->HasInput("Predict"), "Input", "Predict", "Auc");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "Auc");
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
    auto predict_dims = ctx->GetInputDim("Predict");
    auto label_dims = ctx->GetInputDim("Label");
    auto predict_width = predict_dims[1];
    PADDLE_ENFORCE_NE(
        framework::product(predict_dims), 0,
        platform::errors::InvalidArgument(
            "The Input(Predict) has not been initialized properly. The "
            "shape of Input(Predict) = [%s], the shape can not involes 0.",
            predict_dims));
    PADDLE_ENFORCE_NE(
        framework::product(label_dims), 0,
        platform::errors::InvalidArgument(
            "The Input(Label) has not been initialized properly. The "
            "shape of Input(Label) = [%s], the shape can not involes 0.",
            label_dims));
43 44
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_LE(predict_width, 2,
45 46 47
                        platform::errors::InvalidArgument(
                            "Only support binary classification,"
                            "prediction dims[1] should be 1 or 2"));
48
    }
Q
Qiao Longfei 已提交
49
    auto predict_height = ctx->GetInputDim("Predict")[0];
武毅 已提交
50
    auto label_height = ctx->GetInputDim("Label")[0];
T
typhoonzero 已提交
51

52 53
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(predict_height, label_height,
54 55
                        platform::errors::InvalidArgument(
                            "Out and Label should have same height."));
56
    }
T
typhoonzero 已提交
57

T
tangwei12 已提交
58
    int num_pred_buckets = ctx->Attrs().Get<int>("num_thresholds") + 1;
T
tangwei12 已提交
59 60
    int slide_steps = ctx->Attrs().Get<int>("slide_steps");

61 62 63 64 65 66
    PADDLE_ENFORCE_GE(
        num_pred_buckets, 1,
        platform::errors::InvalidArgument("num_thresholds must larger than 1"));
    PADDLE_ENFORCE_GE(slide_steps, 0,
                      platform::errors::InvalidArgument(
                          "slide_steps must be natural number"));
W
Wu Yi 已提交
67

T
typhoonzero 已提交
68
    ctx->SetOutputDim("AUC", {1});
T
tangwei12 已提交
69

H
hutuxian 已提交
70 71 72 73 74 75 76 77 78
    if (slide_steps) {
      ctx->SetOutputDim("StatPosOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
      ctx->SetOutputDim("StatNegOut",
                        {(1 + slide_steps) * num_pred_buckets + 1});
    } else {
      ctx->SetOutputDim("StatPosOut", {1, num_pred_buckets});
      ctx->SetOutputDim("StatNegOut", {1, num_pred_buckets});
    }
武毅 已提交
79 80 81
  }

 protected:
82
  framework::OpKernelType GetExpectedKernelType(
武毅 已提交
83
      const framework::ExecutionContext &ctx) const override {
84 85
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Predict"),
86
        ctx.device_context());
T
typhoonzero 已提交
87 88 89 90 91
  }
};

class AucOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
92
  void Make() override {
Q
Qiao Longfei 已提交
93 94 95
    AddInput("Predict",
             "A floating point 2D tensor with shape [batch_size, 2], values "
             "are in the range [0, 1]."
武毅 已提交
96
             "Typically, this tensor indicates the probability of each label");
T
auc_op  
typhoonzero 已提交
97
    AddInput("Label",
Q
Qiao Longfei 已提交
98 99
             "A 2D int tensor indicating the label of the training data. "
             "shape: [batch_size, 1]");
T
tangwei12 已提交
100

T
auc_op  
typhoonzero 已提交
101
    // TODO(typhoonzero): support weight input
T
tangwei12 已提交
102 103 104
    AddInput("StatPos", "Statistic value when label = 1");
    AddInput("StatNeg", "Statistic value when label = 0");

T
auc_op  
typhoonzero 已提交
105
    AddOutput("AUC",
T
typhoonzero 已提交
106
              "A scalar representing the "
107
              "current area-under-the-curve.");
T
tangwei12 已提交
108

T
tangwei12 已提交
109 110
    AddOutput("StatPosOut", "Statistic value when label = 1");
    AddOutput("StatNegOut", "Statistic value when label = 0");
T
typhoonzero 已提交
111

T
typhoonzero 已提交
112
    AddAttr<std::string>("curve", "Curve type, can be 'ROC' or 'PR'.")
T
typhoonzero 已提交
113
        .SetDefault("ROC");
T
tangwei12 已提交
114

T
tangwei12 已提交
115 116 117
    AddAttr<int>(
        "num_thresholds",
        "The number of thresholds to use when discretizing the roc curve.")
T
tangwei12 已提交
118
        .SetDefault((2 << 12) - 1);
T
tangwei12 已提交
119 120
    AddAttr<int>("slide_steps", "Use slide steps to calc batch auc.")
        .SetDefault(1);
121 122
    AddComment(R"DOC(
Area Under The Curve (AUC) Operator.
武毅 已提交
123

124 125
This implementation computes the AUC according to forward output and label.
It is used very widely in binary classification evaluation. As a note:
武毅 已提交
126
If input label contains values other than 0 and 1, it will be cast
127
to bool. You can find the relevant definitions here:
武毅 已提交
128 129
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve

130 131 132
There are two types of possible curves:
1. ROC: Receiver operating characteristic
2. PR: Precision Recall
武毅 已提交
133
)DOC");
T
typhoonzero 已提交
134 135 136 137 138 139 140
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
T
update  
typhoonzero 已提交
141
REGISTER_OP_WITHOUT_GRADIENT(auc, ops::AucOp, ops::AucOpMaker);
T
typhoonzero 已提交
142
REGISTER_OP_CPU_KERNEL(auc, ops::AucKernel<paddle::platform::CPUPlace, float>);