yolo_box_op.cc 7.7 KB
Newer Older
D
dengkaipeng 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/detection/yolo_box_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class YoloBoxOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of YoloBoxOp should not be null.");
26 27
    PADDLE_ENFORCE(ctx->HasInput("ImgSize"),
                   "Input(ImgSize) of YoloBoxOp should not be null.");
D
dengkaipeng 已提交
28 29 30 31 32 33
    PADDLE_ENFORCE(ctx->HasOutput("Boxes"),
                   "Output(Boxes) of YoloBoxOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Scores"),
                   "Output(Scores) of YoloBoxOp should not be null.");

    auto dim_x = ctx->GetInputDim("X");
34
    auto dim_imgsize = ctx->GetInputDim("ImgSize");
D
dengkaipeng 已提交
35 36 37 38 39 40 41 42 43
    auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
    int anchor_num = anchors.size() / 2;
    auto class_num = ctx->Attrs().Get<int>("class_num");

    PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
    PADDLE_ENFORCE_EQ(
        dim_x[1], anchor_num * (5 + class_num),
        "Input(X) dim[1] should be equal to (anchor_mask_number * (5 "
        "+ class_num)).");
44 45
    PADDLE_ENFORCE_EQ(dim_imgsize.size(), 2,
                      "Input(ImgSize) should be a 2-D tensor.");
46 47 48 49 50 51
    if ((dim_imgsize[0] > 0 && dim_x[0] > 0) || ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(
          dim_imgsize[0], dim_x[0],
          platform::errors::InvalidArgument(
              "Input(ImgSize) dim[0] and Input(X) dim[0] should be same."));
    }
52
    PADDLE_ENFORCE_EQ(dim_imgsize[1], 2, "Input(ImgSize) dim[1] should be 2.");
D
dengkaipeng 已提交
53
    PADDLE_ENFORCE_GT(anchors.size(), 0,
D
dengkaipeng 已提交
54
                      "Attr(anchors) length should be greater than 0.");
D
dengkaipeng 已提交
55 56 57
    PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
                      "Attr(anchors) length should be even integer.");
    PADDLE_ENFORCE_GT(class_num, 0,
D
dengkaipeng 已提交
58
                      "Attr(class_num) should be an integer greater than 0.");
D
dengkaipeng 已提交
59 60 61 62 63 64 65 66 67 68 69 70

    int box_num = dim_x[2] * dim_x[3] * anchor_num;
    std::vector<int64_t> dim_boxes({dim_x[0], box_num, 4});
    ctx->SetOutputDim("Boxes", framework::make_ddim(dim_boxes));

    std::vector<int64_t> dim_scores({dim_x[0], box_num, class_num});
    ctx->SetOutputDim("Scores", framework::make_ddim(dim_scores));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
71 72
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
D
dengkaipeng 已提交
73 74 75 76 77 78 79
  }
};

class YoloBoxOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
D
dengkaipeng 已提交
80 81
             "The input tensor of YoloBox operator is a 4-D tensor with "
             "shape of [N, C, H, W]. The second dimension(C) stores "
D
dengkaipeng 已提交
82 83
             "box locations, confidence score and classification one-hot "
             "keys of each anchor box. Generally, X should be the output "
D
dengkaipeng 已提交
84
             "of YOLOv3 network.");
85 86
    AddInput("ImgSize",
             "The image size tensor of YoloBox operator, "
D
dengkaipeng 已提交
87
             "This is a 2-D tensor with shape of [N, 2]. This tensor holds "
D
dengkaipeng 已提交
88
             "height and width of each input image used for resizing output "
89
             "box in input image scale.");
D
dengkaipeng 已提交
90 91
    AddOutput("Boxes",
              "The output tensor of detection boxes of YoloBox operator, "
D
dengkaipeng 已提交
92 93
              "This is a 3-D tensor with shape of [N, M, 4], N is the "
              "batch num, M is output box number, and the 3rd dimension "
D
dengkaipeng 已提交
94 95
              "stores [xmin, ymin, xmax, ymax] coordinates of boxes.");
    AddOutput("Scores",
D
dengkaipeng 已提交
96 97 98 99
              "The output tensor of detection boxes scores of YoloBox "
              "operator, This is a 3-D tensor with shape of "
              "[N, M, :attr:`class_num`], N is the batch num, M is "
              "output box number.");
D
dengkaipeng 已提交
100 101 102 103 104 105 106 107 108 109 110 111

    AddAttr<int>("class_num", "The number of classes to predict.");
    AddAttr<std::vector<int>>("anchors",
                              "The anchor width and height, "
                              "it will be parsed pair by pair.")
        .SetDefault(std::vector<int>{});
    AddAttr<int>("downsample_ratio",
                 "The downsample ratio from network input to YoloBox operator "
                 "input, so 32, 16, 8 should be set for the first, second, "
                 "and thrid YoloBox operators.")
        .SetDefault(32);
    AddAttr<float>("conf_thresh",
D
dengkaipeng 已提交
112 113
                   "The confidence scores threshold of detection boxes. "
                   "Boxes with confidence scores under threshold should "
D
dengkaipeng 已提交
114 115
                   "be ignored.")
        .SetDefault(0.01);
116 117 118 119
    AddAttr<bool>("clip_bbox",
                  "Whether clip output bonding box in Input(ImgSize) "
                  "boundary. Default true.")
        .SetDefault(true);
D
dengkaipeng 已提交
120
    AddComment(R"DOC(
D
dengkaipeng 已提交
121
         This operator generates YOLO detection boxes from output of YOLOv3 network.
D
dengkaipeng 已提交
122 123
         
         The output of previous network is in shape [N, C, H, W], while H and W
D
dengkaipeng 已提交
124 125
         should be the same, H and W specify the grid size, each grid point predict 
         given number boxes, this given number, which following will be represented as S,
D
dengkaipeng 已提交
126 127 128
         is specified by the number of anchors. In the second dimension(the channel
         dimension), C should be equal to S * (5 + class_num), class_num is the object 
         category number of source dataset(such as 80 in coco dataset), so the 
D
dengkaipeng 已提交
129 130 131 132 133 134
         second(channel) dimension, apart from 4 box location coordinates x, y, w, h, 
         also includes confidence score of the box and class one-hot key of each anchor 
         box.

         Assume the 4 location coordinates are :math:`t_x, t_y, t_w, t_h`, the box 
         predictions should be as follows:
D
dengkaipeng 已提交
135 136

         $$
D
dengkaipeng 已提交
137
         b_x = \\sigma(t_x) + c_x
D
dengkaipeng 已提交
138 139
         $$
         $$
D
dengkaipeng 已提交
140
         b_y = \\sigma(t_y) + c_y
D
dengkaipeng 已提交
141 142
         $$
         $$
D
dengkaipeng 已提交
143
         b_w = p_w e^{t_w}
D
dengkaipeng 已提交
144 145
         $$
         $$
D
dengkaipeng 已提交
146 147 148
         b_h = p_h e^{t_h}
         $$

D
dengkaipeng 已提交
149 150
         in the equation above, :math:`c_x, c_y` is the left top corner of current grid
         and :math:`p_w, p_h` is specified by anchors.
D
dengkaipeng 已提交
151

D
dengkaipeng 已提交
152 153
         The logistic regression value of the 5th channel of each anchor prediction boxes
         represents the confidence score of each prediction box, and the logistic
D
dengkaipeng 已提交
154
         regression value of the last :attr:`class_num` channels of each anchor prediction 
D
dengkaipeng 已提交
155
         boxes represents the classifcation scores. Boxes with confidence scores less than
D
dengkaipeng 已提交
156
         :attr:`conf_thresh` should be ignored, and box final scores is the product of 
D
dengkaipeng 已提交
157
         confidence scores and classification scores.
D
dengkaipeng 已提交
158

D
dengkaipeng 已提交
159 160 161 162
         $$
         score_{pred} = score_{conf} * score_{class}
         $$

D
dengkaipeng 已提交
163 164 165 166 167 168 169 170
         )DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
171 172 173 174
REGISTER_OPERATOR(
    yolo_box, ops::YoloBoxOp, ops::YoloBoxOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
175 176
REGISTER_OP_CPU_KERNEL(yolo_box, ops::YoloBoxKernel<float>,
                       ops::YoloBoxKernel<double>);