pd_predictor.cc 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
F
flame 已提交
16 17
#include <cstdlib>
#include <cstring>
18
#include <map>
19
#include <memory>
20 21
#include <numeric>
#include <vector>
F
flame 已提交
22
#include "paddle/fluid/inference/api/paddle_api.h"
23
#include "paddle/fluid/inference/capi/c_api_internal.h"
F
flame 已提交
24
#include "paddle/fluid/inference/capi/paddle_c_api.h"
25

F
flame 已提交
26
using paddle::ConvertToACPrecision;
27 28 29
using paddle::ConvertToPaddleDType;
using paddle::ConvertToPDDataType;

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
namespace {
#define _DataTypeHelper_(CALLBACK, CPP_TYPE, PD_TYPE) \
  CALLBACK(CPP_TYPE, PD_DataType::PD_TYPE);

#define _DataType_(CALLBACK)                     \
  _DataTypeHelper_(CALLBACK, float, PD_FLOAT32); \
  _DataTypeHelper_(CALLBACK, int32_t, PD_INT32); \
  _DataTypeHelper_(CALLBACK, int64_t, PD_INT64); \
  _DataTypeHelper_(CALLBACK, uint8_t, PD_UINT8);

template <typename Visitor>
inline void VisitDataType(PD_DataType type, Visitor visitor) {
#define VisitDataTypeCallback(CPP_TYPE, PD_TYPE) \
  do {                                           \
    if (type == PD_TYPE) {                       \
      visitor.template apply<CPP_TYPE>();        \
      return;                                    \
    }                                            \
  } while (0)

  _DataType_(VisitDataTypeCallback);
#undef VisitDataTypeCallback
52 53
  PADDLE_THROW(
      paddle::platform::errors::InvalidArgument("Unsupported data type."));
54 55 56 57 58
}

struct PD_ZeroCopyFunctor {
  PD_ZeroCopyData* output_i;
  paddle::ZeroCopyTensor* output_t;
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  PD_ZeroCopyFunctor(PD_ZeroCopyData* output_i_,
                     paddle::ZeroCopyTensor* output_t_)
      : output_i(output_i_), output_t(output_t_) {}

  template <typename OutT>
  void apply() {
    std::vector<OutT> out_data;
    int out_num =
        std::accumulate(output_i->shape, output_i->shape + output_i->shape_size,
                        1, std::multiplies<int>());
    out_data.resize(out_num);
    output_t->copy_to_cpu(out_data.data());
    output_i->data = reinterpret_cast<void*>(malloc(out_num * sizeof(OutT)));
    memmove(static_cast<OutT*>(output_i->data), out_data.data(),
            out_num * sizeof(OutT));
  }
};

}  // namespace

extern "C" {
81
bool PD_PredictorRun(const PD_AnalysisConfig* config, PD_Tensor* inputs,
82
                     int in_size, PD_Tensor** output_data, int* out_size,
83
                     int batch_size) {
84
  PADDLE_ENFORCE_NOT_NULL(config);
85
  VLOG(3) << "Predoctor: PD_PredictorRun. ";
86 87 88 89 90 91 92
  static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
      predictors;
  if (!predictors.count(config->config.model_dir())) {
    predictors[config->config.model_dir()] =
        paddle::CreatePaddlePredictor(config->config);
  }
  auto& predictor = predictors[config->config.model_dir()];
93 94 95 96 97
  std::vector<paddle::PaddleTensor> in;
  for (int i = 0; i < in_size; ++i) {
    in.emplace_back(inputs->tensor);
  }
  std::vector<paddle::PaddleTensor> out;
98
  VLOG(3) << "Run predictor in CAPI encapsulation. ";
99 100
  if (predictor->Run(in, &out, batch_size)) {
    int osize = out.size();
101
    *output_data = new PD_Tensor[osize];
102
    for (int i = 0; i < osize; ++i) {
103
      output_data[i]->tensor = out[i];
104
    }
105
    *out_size = osize;
106 107 108 109 110 111 112
    return true;
  }
  return false;
}

bool PD_PredictorZeroCopyRun(const PD_AnalysisConfig* config,
                             PD_ZeroCopyData* inputs, int in_size,
113
                             PD_ZeroCopyData** output, int* out_size) {
114
  PADDLE_ENFORCE_NOT_NULL(config);
115 116 117 118 119 120 121
  static std::map<std::string, std::unique_ptr<paddle::PaddlePredictor>>
      predictors;
  if (!predictors.count(config->config.model_dir())) {
    predictors[config->config.model_dir()] =
        paddle::CreatePaddlePredictor(config->config);
  }
  auto& predictor = predictors[config->config.model_dir()];
122
  auto input_names = predictor->GetInputNames();
123
  VLOG(3) << "The inputs' size is " << input_names.size();
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
  PADDLE_ENFORCE_EQ(
      input_names.size(), in_size,
      "The number of input and the number of model's input must match. ");
  for (int i = 0; i < in_size; ++i) {
    auto input_t = predictor->GetInputTensor(inputs[i].name);
    std::vector<int> tensor_shape;
    tensor_shape.assign(inputs[i].shape,
                        inputs[i].shape + inputs[i].shape_size);
    input_t->Reshape(tensor_shape);
    switch (inputs[i].dtype) {
      case PD_FLOAT32:
        input_t->copy_from_cpu(static_cast<float*>(inputs[i].data));
        break;
      case PD_INT32:
        input_t->copy_from_cpu(static_cast<int32_t*>(inputs[i].data));
        break;
      case PD_INT64:
        input_t->copy_from_cpu(static_cast<int64_t*>(inputs[i].data));
        break;
      case PD_UINT8:
        input_t->copy_from_cpu(static_cast<uint8_t*>(inputs[i].data));
        break;
      default:
        CHECK(false) << "Unsupport data type.";
        break;
    }
  }
151
  VLOG(3) << "Run ZeroCopyRun() in CAPI encapsulation. ";
152 153 154
  CHECK(predictor->ZeroCopyRun());
  auto output_names = predictor->GetOutputNames();
  int osize = output_names.size();
155
  *out_size = osize;
156 157
  *output = new PD_ZeroCopyData[osize];
  VLOG(3) << "The output size is " << osize;
158
  for (int i = 0; i < *out_size; ++i) {
159 160 161
    auto& output_i = (*output)[i];
    output_i.name = new char[output_names[i].length() + 1];
    snprintf(output_i.name, output_names[i].length() + 1, "%s",
162 163
             output_names[i].c_str());
    auto output_t = predictor->GetOutputTensor(output_names[i]);
164
    output_i.dtype = ConvertToPDDataType(output_t->type());
165
    std::vector<int> output_shape = output_t->shape();
166
    output_i.shape = new int[output_shape.size()];
167 168
    memmove(output_i.shape, output_shape.data(),
            output_shape.size() * sizeof(int));
169
    output_i.shape_size = output_shape.size();
170 171
    VisitDataType(output_i.dtype,
                  PD_ZeroCopyFunctor(&output_i, std::move(output_t.get())));
172 173 174
  }
  return true;
}
F
flame 已提交
175 176 177 178 179 180 181 182

PD_Predictor* PD_NewPredictor(const PD_AnalysisConfig* config) {
  PD_Predictor* predictor = new PD_Predictor;
  predictor->predictor = paddle::CreatePaddlePredictor(config->config);
  return predictor;
}

void PD_DeletePredictor(PD_Predictor* predictor) {
183 184
  if (predictor) {
    predictor->predictor = nullptr;
F
flame 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    delete predictor;
    predictor = nullptr;
  }
}

int PD_GetInputNum(const PD_Predictor* predictor) {
  return static_cast<int>(predictor->predictor->GetInputNames().size());
}

int PD_GetOutputNum(const PD_Predictor* predictor) {
  return static_cast<int>(predictor->predictor->GetOutputNames().size());
}

const char* PD_GetInputName(const PD_Predictor* predictor, int n) {
  static std::vector<std::string> names = predictor->predictor->GetInputNames();
  return names[n].c_str();
}

const char* PD_GetOutputName(const PD_Predictor* predictor, int n) {
  static std::vector<std::string> names =
      predictor->predictor->GetOutputNames();
  return names[n].c_str();
}

void PD_SetZeroCopyInput(PD_Predictor* predictor,
                         const PD_ZeroCopyTensor* tensor) {
  auto input = predictor->predictor->GetInputTensor(tensor->name);
  auto* shape_ptr = static_cast<int*>(tensor->shape.data);
  std::vector<int> shape(shape_ptr,
                         shape_ptr + tensor->shape.length / sizeof(int));
  input->Reshape(std::move(shape));
  switch (tensor->dtype) {
    case PD_FLOAT32:
      input->copy_from_cpu(static_cast<float*>(tensor->data.data));
      break;
    case PD_INT32:
      input->copy_from_cpu(static_cast<int32_t*>(tensor->data.data));
      break;
    case PD_INT64:
      input->copy_from_cpu(static_cast<int64_t*>(tensor->data.data));
      break;
    case PD_UINT8:
      input->copy_from_cpu(static_cast<uint8_t*>(tensor->data.data));
      break;
    default:
      CHECK(false) << "Unsupport data type.";
      break;
  }

  if (tensor->lod.length) {
    auto* lod_ptr = reinterpret_cast<size_t*>(tensor->lod.data);
236 237
    std::vector<size_t> lod;
    lod.assign(lod_ptr, lod_ptr + tensor->lod.length / sizeof(size_t));
F
flame 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    input->SetLoD({std::move(lod)});
  }
}

void PD_GetZeroCopyOutput(PD_Predictor* predictor, PD_ZeroCopyTensor* tensor) {
  auto output = predictor->predictor->GetOutputTensor(tensor->name);
  tensor->dtype = ConvertToPDDataType(output->type());
  auto shape = output->shape();
  size_t shape_size = shape.size();
  if (tensor->shape.capacity < shape_size * sizeof(int)) {
    if (tensor->shape.data || tensor->shape.capacity) {
      std::free(tensor->shape.data);
    }
    tensor->shape.data = std::malloc(shape_size * sizeof(int));
    tensor->shape.capacity = shape_size * sizeof(int);
  }
  tensor->shape.length = shape_size * sizeof(int);
  std::copy(shape.begin(), shape.end(), static_cast<int*>(tensor->shape.data));

  int n =
      std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
  size_t length = n * paddle::PaddleDtypeSize(output->type());
  if (tensor->data.capacity < length) {
    if (tensor->data.data) {
      std::free(tensor->data.data);
    }
    tensor->data.data = std::malloc(length);
    tensor->data.capacity = std::move(length);
  }
  tensor->data.length = length;

  auto lod = output->lod();
270 271 272 273 274 275
  if (!lod.empty()) {
    tensor->lod.length = lod.front().size() * sizeof(size_t);
    if (tensor->lod.capacity < lod.front().size()) {
      if (tensor->lod.data) {
        std::free(tensor->lod.data);
      }
F
flame 已提交
276

277 278 279 280 281
      tensor->lod.data = std::malloc(lod.front().size() * sizeof(size_t));
      tensor->lod.capacity = lod.front().size() * sizeof(size_t);
    }
    std::copy(lod.front().begin(), lod.front().end(),
              reinterpret_cast<size_t*>(tensor->lod.data));
F
flame 已提交
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
  }
  switch (tensor->dtype) {
    case PD_FLOAT32:
      output->copy_to_cpu(reinterpret_cast<float*>(tensor->data.data));
      break;
    case PD_INT32:
      output->copy_to_cpu(reinterpret_cast<int32_t*>(tensor->data.data));
      break;
    case PD_INT64:
      output->copy_to_cpu(reinterpret_cast<int64_t*>(tensor->data.data));
      break;
    case PD_UINT8:
      output->copy_to_cpu(reinterpret_cast<uint8_t*>(tensor->data.data));
      break;
    default:
      CHECK(false) << "Unsupport data type.";
      break;
  }
}

void PD_ZeroCopyRun(PD_Predictor* predictor) {
  predictor->predictor->ZeroCopyRun();
}
305
}  // extern "C"