op_registry.h 15.2 KB
Newer Older
F
fengjiayi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#pragma once

17
#include <algorithm>
18
#include <atomic>
Y
Yu Yang 已提交
19
#include <type_traits>
20 21
#include <unordered_map>
#include <unordered_set>
Q
Qiao Longfei 已提交
22
#include "paddle/framework/attr_checker.h"
F
fengjiayi 已提交
23
#include "paddle/framework/grad_op_creator.h"
24
#include "paddle/framework/op_desc.pb.h"
D
dongzhihong 已提交
25
#include "paddle/framework/scope.h"
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78

namespace paddle {
namespace framework {

// helper class to set attribute type
struct AttrTypeHelper {
  template <typename T>
  static void SetAttrType(AttrProto* attr);

  static Attribute GetAttrValue(const AttrDesc& attr_desc) {
    switch (attr_desc.type()) {
      case paddle::framework::AttrType::INT: {
        return attr_desc.i();
      }
      case paddle::framework::AttrType::FLOAT: {
        return attr_desc.f();
      }
      case paddle::framework::AttrType::STRING: {
        return attr_desc.s();
      }
      case paddle::framework::AttrType::INTS: {
        std::vector<int> val(attr_desc.ints_size());
        for (int i = 0; i < attr_desc.ints_size(); ++i) {
          val[i] = attr_desc.ints(i);
        }
        return val;
      }
      case paddle::framework::AttrType::FLOATS: {
        std::vector<float> val(attr_desc.floats_size());
        for (int i = 0; i < attr_desc.floats_size(); ++i) {
          val[i] = attr_desc.floats(i);
        }
        return val;
      }
      case paddle::framework::AttrType::STRINGS: {
        std::vector<std::string> val(attr_desc.strings_size());
        for (int i = 0; i < attr_desc.strings_size(); ++i) {
          val[i] = attr_desc.strings(i);
        }
        return val;
      }
    }
    PADDLE_ENFORCE(false, "Unknown OpDesc::AttrDesc::type !");
    return boost::blank();
  }
};

// this class not only make proto but also init attribute checkers.
class OpProtoAndCheckerMaker {
 public:
  OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker)
      : proto_(proto), op_checker_(op_checker) {}

79 80 81 82 83 84 85 86
  ~OpProtoAndCheckerMaker() {
    PADDLE_ENFORCE(validated_, "should call Validate after build");
  }

  void Validate() {
    validated_ = true;
    CheckNoDuplicatedInOutAttrs();
  }
87

88
 protected:
89
  void AddInput(const std::string& name, const std::string& comment,
90
                bool multiple = false, bool ignore_gradient = false) {
91
    auto input = proto_->mutable_inputs()->Add();
92 93
    *input->mutable_name() = name;
    *input->mutable_comment() = comment;
D
dongzhihong 已提交
94
    input->set_ignore_gradient(ignore_gradient);
95 96 97 98 99 100
    input->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleInput();
    }
  }

101 102 103
  void AddInputs(const std::string& name, const std::string& comment,
                 bool ignore_gradient = false) {
    AddInput(name, comment, true, ignore_gradient);
104 105
  }

106
  void AddOutput(const std::string& name, const std::string& comment,
107 108
                 bool temporary = false, bool multiple = false,
                 bool ignore_gradient = false) {
109
    auto output = proto_->mutable_outputs()->Add();
110 111
    *output->mutable_name() = name;
    *output->mutable_comment() = comment;
D
dongzhihong 已提交
112
    output->set_ignore_gradient(ignore_gradient);
113 114 115 116 117 118 119 120 121 122 123
    output->set_multiple(multiple);
    if (multiple) {
      SetHasMultipleOutput();
    }
    output->set_temporary(temporary);
    if (temporary) {
      SetHasTemporaryOutput();
    }
  }

  void AddOutputs(const std::string& name, const std::string& comment,
124 125
                  bool temporary = false, bool ignore_gradient = false) {
    AddOutput(name, comment, temporary, true, ignore_gradient);
126 127 128 129
  }

  template <typename T>
  TypedAttrChecker<T>& AddAttr(const std::string& name,
130 131
                               const std::string& comment,
                               bool generated = false) {
132
    auto attr = proto_->mutable_attrs()->Add();
133 134
    *attr->mutable_name() = name;
    *attr->mutable_comment() = comment;
135
    attr->set_generated(generated);
136 137 138 139 140 141 142 143
    AttrTypeHelper::SetAttrType<T>(attr);
    return op_checker_->AddAttrChecker<T>(name);
  }

  void AddComment(const std::string& comment) {
    *(proto_->mutable_comment()) = comment;
  }

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
 private:
  void SetHasMultiple(const std::string& in_out, bool* flag) {
    if (!*flag) {
      AddAttr<std::vector<int>>(in_out + "_format",
                                "The multiple index of " + in_out +
                                    "\n"
                                    R"DOC(
This attribute is used by Paddle core framework. Paddle's Op support each input
or output could be a list of variable. This attribute is used to show how that
list organized.

e.g.
  input = ["a", "b", "c", "d", "e", "f"]
  input_format = [0, 4, 5, 6]

means
  The number of all input variables this op is six, and they are segmented into
  three inputs.

  The first input is input[0:4], second is input[4:5], third is input[5:6].
)DOC",
                                /*generated*/ true);
      *flag = true;
    }
  }

  void SetHasMultipleInput() { SetHasMultiple("input", &has_multiple_input_); }
  void SetHasMultipleOutput() {
    SetHasMultiple("output", &has_multiple_output_);
  }

  void SetHasTemporaryOutput() {
    if (!has_temporary_output_) {
      AddAttr<std::vector<int>>("temporary_index",
                                R"DOC(The temporary index of output.

Not all output of Paddle Op is used by user. For faster computation, each op
could output some its internal state to other op, other op could take that
output to make compute faster.

Add a mark to which output is temporary is helpful for future optimization.
)DOC",
                                /*generated*/ true)
          .SetDefault(std::vector<int>());
      has_temporary_output_ = true;
    }
  }

192
  void CheckNoDuplicatedInOutAttrs() {
193
    std::unordered_set<std::string> names;
194 195 196 197
    auto checker = [&](const std::string& name) {
      PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name);
      names.insert(name);
    };
198
    for (auto& attr : proto_->attrs()) {
199 200 201 202 203 204 205
      checker(attr.name());
    }
    for (auto& input : proto_->inputs()) {
      checker(input.name());
    }
    for (auto& output : proto_->outputs()) {
      checker(output.name());
206 207 208
    }
  }

209 210
  OpProto* proto_;
  OpAttrChecker* op_checker_;
211
  bool validated_{false};
212 213 214
  bool has_multiple_input_{false};
  bool has_multiple_output_{false};
  bool has_temporary_output_{false};
215 216 217
};

class OpRegistry {
Q
Qiao Longfei 已提交
218
  using OpCreator = std::function<OperatorBase*()>;
Y
Yu Yang 已提交
219
  using VarIndexMap = std::unordered_map<std::string, int>;
Y
Yu Yang 已提交
220
  using VarNameList = std::vector<std::string>;
221 222 223 224

 public:
  template <typename OpType, typename ProtoMakerType>
  static void RegisterOp(const std::string& op_type) {
225 226
    creators()[op_type] = [] { return new OpType; };
    OpAttrChecker& op_checker = op_checkers()[op_type];
D
dongzhihong 已提交
227
    OpProto& op_proto = protos()[op_type];
228 229
    auto maker = ProtoMakerType(&op_proto, &op_checker);
    maker.Validate();
Y
Yu Yang 已提交
230 231 232 233 234
    *op_proto.mutable_type() = op_type;
    PADDLE_ENFORCE(
        op_proto.IsInitialized(),
        "Fail to initialize %s's OpProto, because %s is not initialized",
        op_type, op_proto.InitializationErrorString());
Y
Yu Yang 已提交
235 236 237 238 239 240 241 242 243 244 245

    VarIndexMaps()[op_type].reset(new VarIndexMap());
    auto& varmap = *VarIndexMaps()[op_type];
    int idx = 0;
    for (auto& var : op_proto.inputs()) {
      varmap[var.name()] = idx++;
    }
    idx = 0;
    for (auto& var : op_proto.outputs()) {
      varmap[var.name()] = idx++;
    }
246 247
  }

F
fengjiayi 已提交
248 249 250 251 252
  template <typename OpType>
  static void RegisterGradOp(const std::string& op_type) {
    grad_creators()[op_type] = [] { return new OpType; };
  }

Y
Yu Yang 已提交
253 254 255 256 257 258
  static OperatorPtr CreateOp(const std::string& type,
                              const VarNameList& inputs,
                              const VarNameList& outputs,
                              const AttributeMap& attrs) {
    auto op_create_it = creators().find(type);
    PADDLE_ENFORCE(op_create_it != creators().end(),
F
fengjiayi 已提交
259
                   "Operator %s cannot be found.", type);
260

Y
Yu Yang 已提交
261 262 263 264
    auto op = op_create_it->second();
    op->type_ = type;
    op->inputs_ = inputs;
    op->outputs_ = outputs;
F
fengjiayi 已提交
265

Y
Yu Yang 已提交
266 267
    op->attrs_ = attrs;
    op_checkers().at(type).Check(op->attrs_);
268

Y
Yu Yang 已提交
269
    GenerateTempVariableName(op);
270

Y
Yu Yang 已提交
271
    {
Y
Yu Yang 已提交
272
      auto var_index_it = VarIndexMaps().find(type);
Y
Yu Yang 已提交
273 274 275 276
      if (var_index_it != VarIndexMaps().end()) {
        op->in_out_idxs_ = var_index_it->second;
      }
    }
Y
Yu Yang 已提交
277

Q
Qiao Longfei 已提交
278
    op->Init();
Y
Yu Yang 已提交
279
    return OperatorPtr(op);
280 281
  }

Q
Qiao Longfei 已提交
282
  static OperatorPtr CreateOp(const OpDesc& op_desc) {
Y
Yu Yang 已提交
283 284
    std::vector<std::string> inputs;
    inputs.reserve((size_t)op_desc.inputs_size());
285
    std::copy(op_desc.inputs().begin(), op_desc.inputs().end(),
Y
Yu Yang 已提交
286 287 288 289
              std::back_inserter(inputs));

    std::vector<std::string> outputs;
    outputs.reserve((size_t)op_desc.outputs_size());
290
    std::copy(op_desc.outputs().begin(), op_desc.outputs().end(),
Y
Yu Yang 已提交
291 292 293
              std::back_inserter(outputs));

    AttributeMap attrs;
294
    for (auto& attr : op_desc.attrs()) {
Y
Yu Yang 已提交
295
      attrs[attr.name()] = AttrTypeHelper::GetAttrValue(attr);
296
    }
Y
Yu Yang 已提交
297 298

    return CreateOp(op_desc.type(), inputs, outputs, attrs);
299 300
  }

F
fengjiayi 已提交
301
  static OperatorPtr CreateGradOp(OperatorPtr op) {
302 303
    GradOpCreator creator(op.get());
    OperatorPtr grad_op(creator.Create());
F
fengjiayi 已提交
304 305
    grad_op->Init();
    return grad_op;
D
dongzhihong 已提交
306 307
  }

Y
Yu Yang 已提交
308 309 310 311 312
  static std::unordered_map<std::string, OpProto>& protos() {
    static std::unordered_map<std::string, OpProto> protos_;
    return protos_;
  };

313 314 315 316 317
  static std::unordered_map<std::string, OpCreator>& grad_creators() {
    static std::unordered_map<std::string, OpCreator> grad_creators_;
    return grad_creators_;
  }

Y
Yu Yang 已提交
318 319 320 321 322 323
  static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>>&
  VarIndexMaps() {
    static std::unordered_map<std::string, std::shared_ptr<VarIndexMap>> maps_;
    return maps_;
  }

324
 private:
F
fengjiayi 已提交
325 326 327 328 329 330 331 332 333 334
  static std::unordered_map<std::string, OpCreator>& creators() {
    static std::unordered_map<std::string, OpCreator> creators_;
    return creators_;
  }

  static std::unordered_map<std::string, OpAttrChecker>& op_checkers() {
    static std::unordered_map<std::string, OpAttrChecker> op_checkers_;
    return op_checkers_;
  };

335
  static void GenerateTempVariableName(OperatorBase* op) {
336 337 338
    static std::atomic<size_t> gUniqId(0UL);
    for (auto& outname : op->outputs_) {
      if (outname == OperatorBase::TMP_VAR_NAME()) {
339
        outname += op->type_;
340 341 342 343 344
        outname += "@";
        outname += std::to_string(gUniqId.fetch_add(1));
      }
    }
  }
345
};
346 347 348 349

template <typename OpType, typename ProtoMakerType>
class OpRegisterHelper {
 public:
Y
Yu Yang 已提交
350
  OpRegisterHelper(const char* op_type) {
351 352 353 354
    OpRegistry::RegisterOp<OpType, ProtoMakerType>(op_type);
  }
};

D
dongzhihong 已提交
355 356 357 358 359 360 361 362
template <typename OpType>
class GradOpRegisterHelper {
 public:
  GradOpRegisterHelper(const char* op_type) {
    OpRegistry::RegisterGradOp<OpType>(op_type);
  }
};

363 364 365
/**
 * check if MACRO is used in GLOBAL NAMESPACE.
 */
Y
Yu Yang 已提交
366 367 368 369 370 371
#define STATIC_ASSERT_GLOBAL_NAMESPACE(uniq_name, msg)                        \
  struct __test_global_namespace_##uniq_name##__ {};                          \
  static_assert(std::is_same<::__test_global_namespace_##uniq_name##__,       \
                             __test_global_namespace_##uniq_name##__>::value, \
                msg)

372 373 374
/**
 * Macro to Register Operator.
 */
Y
Yu Yang 已提交
375 376 377 378 379 380 381
#define REGISTER_OP(__op_type, __op_class, __op_maker_class)                 \
  STATIC_ASSERT_GLOBAL_NAMESPACE(__reg_op__##__op_type,                      \
                                 "REGISTER_OP must be in global namespace"); \
  static ::paddle::framework::OpRegisterHelper<__op_class, __op_maker_class> \
      __op_register_##__op_type##__(#__op_type);                             \
  int __op_register_##__op_type##_handle__() { return 0; }

D
dongzhihong 已提交
382
/**
F
fengjiayi 已提交
383
 * Macro to Register Gradient Operator.
D
dongzhihong 已提交
384 385 386
 */
#define REGISTER_GRADIENT_OP(__op_type, __op_class)            \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                              \
D
dongzhihong 已提交
387
      __reg_gradient_op__##__op_type,                          \
D
dongzhihong 已提交
388 389
      "REGISTER_GRADIENT_OP must be in global namespace");     \
  static ::paddle::framework::GradOpRegisterHelper<__op_class> \
D
dongzhihong 已提交
390 391
      __op_gradient_register_##__op_type##__(#__op_type);      \
  int __op_gradient_register_##__op_type##_handle__() { return 0; }
D
dongzhihong 已提交
392

393 394 395
/**
 * Macro to Register OperatorKernel.
 */
396
#define REGISTER_OP_KERNEL(type, DEVICE_TYPE, PlaceType, ...)             \
Y
Yu Yang 已提交
397
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
398
      __reg_op_kernel_##type##_##DEVICE_TYPE##__,                         \
Y
Yu Yang 已提交
399 400 401 402 403 404
      "REGISTER_OP_KERNEL must be in global namespace");                  \
  struct __op_kernel_register__##type##__ {                               \
    __op_kernel_register__##type##__() {                                  \
      ::paddle::framework::OperatorWithKernel::OpKernelKey key;           \
      key.place_ = PlaceType();                                           \
      ::paddle::framework::OperatorWithKernel::AllOpKernels()[#type][key] \
405
          .reset(new __VA_ARGS__());                                      \
Y
Yu Yang 已提交
406 407 408
    }                                                                     \
  };                                                                      \
  static __op_kernel_register__##type##__ __reg_kernel_##type##__;        \
409
  int __op_kernel_register_##type##_handle_##DEVICE_TYPE##__() { return 0; }
Y
Yu Yang 已提交
410

411 412 413
// (type, KernelType)
#define REGISTER_OP_GPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
414

415 416 417
// (type, KernelType)
#define REGISTER_OP_CPU_KERNEL(type, ...) \
  REGISTER_OP_KERNEL(type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__)
Y
Yu Yang 已提交
418

419 420 421 422
/**
 * Macro to mark what Operator and Kernel we will use and tell the compiler to
 * link them into target.
 */
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430
#define USE_OP_WITHOUT_KERNEL(op_type)                      \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                           \
      __use_op_without_kernel_##op_type,                    \
      "USE_OP_WITHOUT_KERNEL must be in global namespace"); \
  extern int __op_register_##op_type##_handle__();          \
  static int __use_op_ptr_##op_type##_without_kernel__      \
      __attribute__((unused)) = __op_register_##op_type##_handle__()

Y
Yu Yang 已提交
431 432 433 434 435 436 437 438
#define USE_OP_KERNEL(op_type, DEVICE_TYPE)                               \
  STATIC_ASSERT_GLOBAL_NAMESPACE(                                         \
      __use_op_kernel_##op_type##_##DEVICE_TYPE##__,                      \
      "USE_OP_KERNEL must be in global namespace");                       \
  extern int __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__(); \
  static int __use_op_ptr_##op_type##_##DEVICE_TYPE##_kernel__            \
      __attribute__((unused)) =                                           \
          __op_kernel_register_##op_type##_handle_##DEVICE_TYPE##__()
Y
Yu Yang 已提交
439

440 441
// use Operator with only cpu kernel.
#define USE_OP_CPU(op_type)       \
Y
Yu Yang 已提交
442
  USE_OP_WITHOUT_KERNEL(op_type); \
443
  USE_OP_KERNEL(op_type, CPU)
Y
Yu Yang 已提交
444

445 446
#ifdef PADDLE_ONLY_CPU
#define USE_OP(op_type) USE_OP_CPU(op_type)
Y
Yu Yang 已提交
447
#else
448 449
#define USE_OP(op_type) \
  USE_OP_CPU(op_type);  \
Y
Yu Yang 已提交
450 451
  USE_OP_KERNEL(op_type, GPU)
#endif
452 453 454

}  // namespace framework
}  // namespace paddle