test_attention_lstm_op.py 4.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
from test_fusion_lstm_op import fc, ACTIVATION


def attention_lstm(
        x,  # T x M
        lod,  # 1 x N
        h0,  # N x D
        c0,  # N x D
        fcws,  # (M+D) x 1, 1x1
        fcbs,  # 1 x 1, 1x1
        w,  # (M+D) x 4D
        b,  # 1 x 4D
        act_gate,
        act_cell,
        act_cand):
    hidden
    cell
    return hidden, cell


class TestAttentionLSTMOp(OpTest):
    def set_conf(self):
        self.lod = [[3]]

    def setUp(self):
        self.op_type = 'attention_lstm'
        self.lod = [[3]]
        self.M = 30
        self.D = 15
        self.has_initial_hidden = True
        self.act_gate = 'sigmoid'
        self.act_cell = 'tanh'
        self.act_cand = 'tanh'
        self.set_conf()

        T = sum(self.lod[0])
        bs = len(self.lod[0])

        x = np.random.normal(size=(T, self.M)).astype('float32')
        c0 = np.random.normal(size=(bs, self.D)).astype('float32')
        if self.has_initial_hidden:
            h0 = np.random.normal(size=(bs, self.D)).astype('float32')
        else:
            h0 = np.zeros((bs, self.D)).astype('float32')

        fcw1 = np.random.normal(size=(self.M + self.D, 1)).astype('float32')
        fcb1 = np.random.normal(size=(1, 1)).astype('float32')
        fcw2 = np.random.normal(size=(1, 1)).astype('float32')
        fcb2 = np.random.normal(size=(1, 1)).astype('float32')

        # lstm weight and bias
        w = np.random.normal(size=(self.M + self.D,
                                   self.D * 4)).astype('float32')
        b = np.random.normal(size=(1, self.D * 4)).astype('float32')

        h, c = attention_lstm(x, self.lod, h0, c0, [fcw1, fcw2], [fcb1, fcb2],
                              ACTIVATION[self.act_gate],
                              ACTIVATION[self.act_cell],
                              ACTIVATION[self.act_cand])

        self.inputs = {
            'X': (x, self.lod),
            'C0': c0,
            'AttentionWeight': fcw1,
            'AttentionBias': fcb1,
            'AttentionScalar': fcw2,
            'AttentionScalarBias': fcb2,
            'LSTMWeight': w,
            'LSTMBias': b
        }

        if self.has_initial_hidden:
            self.inputs['H0'] = h0

        self.outputs = {
            'Hidden': (h, self.lod),
            'Cell': (c, self.lod),
        }
        self.attrs = {
            'gate_activation': self.act_gate,
            'cell_activation': self.act_cell,
            'candidate_activation': self.act_cand
        }

    def test_check_output(self):
        self.check_output()


class TestAttentionOpNonInit(TestAttentionLSTMOp):
    def set_conf(self):
        self.has_initial_hidden = False


class TestAttentionOpMD1(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 36
        self.D = 8


class TestAttentionOpMD2(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 8
        self.D = 8


class TestAttentionOpMD3(TestAttentionLSTMOp):
    def set_conf(self):
        self.M = 15
        self.D = 30


class TestAttentionOpBS1(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[5]]
        self.M = 16
        self.D = 32


class TestAttentionOpBS2(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[3, 6]]


class TestAttentionOpBS5(TestAttentionLSTMOp):
    def set_conf(self):
        self.lod = [[3, 2, 4, 7, 5]]


if __name__ == '__main__':
    unittest.main()