test_imperative_triple_grad.py 12.0 KB
Newer Older
W
Weilong Wu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import paddle
from paddle.fluid.wrapped_decorator import wrap_decorator
from paddle.vision.models import resnet50, resnet101
import unittest
from unittest import TestCase
import numpy as np
22
from paddle.fluid.framework import _test_eager_guard, _in_legacy_dygraph, _in_eager_without_dygraph_check
W
Weilong Wu 已提交
23 24 25


def _dygraph_guard_(func):
26

W
Weilong Wu 已提交
27
    def __impl__(*args, **kwargs):
J
Jiabin Yang 已提交
28
        if fluid._non_static_mode():
W
Weilong Wu 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
            return func(*args, **kwargs)
        else:
            with fluid.dygraph.guard():
                return func(*args, **kwargs)

    return __impl__


dygraph_guard = wrap_decorator(_dygraph_guard_)


def random_var(size, low=-1, high=1, dtype='float32'):
    np.random.seed(2021)
    x_np = np.random.uniform(low=low, high=high, size=size).astype(dtype)
    return fluid.dygraph.to_variable(x_np)


46
class TestDygraphTripleGradMatmul(TestCase):
47

48 49 50
    def test_matmul_triple_grad(self):
        input_numpy = np.ones([3, 3]) * 2
        with _test_eager_guard():
51 52 53 54 55 56
            x = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
            y = paddle.to_tensor(input_numpy,
                                 stop_gradient=False,
                                 dtype='float32')
57 58
            out = paddle.matmul(x, y, False, False)

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
            new_out_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_x_g, new_y_g = paddle.grad([out], [x, y], [new_out_g],
                                           retain_graph=True,
                                           create_graph=True)

            new_x_g_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_y_g_g = paddle.to_tensor(np.ones([3, 3]),
                                         stop_gradient=False,
                                         dtype='float32')
            new_a, new_b, new_c = paddle.grad([new_x_g, new_y_g],
                                              [x, y, new_out_g],
                                              [new_x_g_g, new_y_g_g],
                                              retain_graph=True,
                                              create_graph=True)
77 78 79 80

            new_a.backward()

            out_ref = np.ones([3, 3]) * 12.0
81
            np.testing.assert_array_equal(out.numpy(), out_ref)
82 83 84

            new_x_g_ref = np.ones([3, 3]) * 6.0
            new_y_g_ref = np.ones([3, 3]) * 6.0
85 86
            np.testing.assert_array_equal(new_x_g.numpy(), new_x_g_ref)
            np.testing.assert_array_equal(new_y_g.numpy(), new_y_g_ref)
87 88 89 90 91

            new_a_ref = np.ones([3, 3]) * 3.0
            new_b_ref = np.ones([3, 3]) * 3.0
            new_c_ref = np.ones([3, 3]) * 12.0

92 93 94
            np.testing.assert_array_equal(new_a.numpy(), new_a_ref)
            np.testing.assert_array_equal(new_b.numpy(), new_b_ref)
            np.testing.assert_array_equal(new_c.numpy(), new_c_ref)
95 96

            x_grad_ref = np.ones([3, 3]) * 0.0
97
            np.testing.assert_array_equal(x.grad.numpy(), x_grad_ref)
98 99

            y_grad_ref = np.ones([3, 3]) * 0.0
100
            np.testing.assert_array_equal(y.grad.numpy(), y_grad_ref)
101 102

            new_out_g_ref = np.ones([3, 3]) * 3.0
103
            np.testing.assert_array_equal(new_out_g.grad.numpy(), new_out_g_ref)
104 105 106

            new_x_g_g_ref = np.ones([3, 3]) * 0.0
            new_y_g_g_ref = np.ones([3, 3]) * 3.0
107 108
            np.testing.assert_array_equal(new_x_g_g.grad.numpy(), new_x_g_g_ref)
            np.testing.assert_array_equal(new_y_g_g.grad.numpy(), new_y_g_g_ref)
109 110


W
Weilong Wu 已提交
111
class TestDygraphTripleGrad(TestCase):
112

W
Weilong Wu 已提交
113 114 115 116 117 118 119 120 121 122 123 124 125
    def setUp(self):
        self.sort_sum_gradient = False
        self.shape = [5, 5]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
126 127 128 129 130 131 132
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
W
Weilong Wu 已提交
133 134

    @dygraph_guard
135
    def func_exception(self):
W
Weilong Wu 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
        with self.assertRaises(AssertionError):
            self.grad(None, None)

        shape = self.shape

        with self.assertRaises(AssertionError):
            self.grad(1, random_var(shape))

        with self.assertRaises(AssertionError):
            self.grad(random_var(shape), 1)

        with self.assertRaises(AssertionError):
            self.grad([1], [random_var(shape)])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [1])

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape), random_var(shape)],
                      [random_var(shape)], [random_var(shape)])

        with self.assertRaises(AssertionError):
158 159
            self.grad([random_var(shape)], [random_var(shape)],
                      no_grad_vars=[1])
W
Weilong Wu 已提交
160 161 162 163 164

        with self.assertRaises(AssertionError):
            self.grad([random_var(shape)], [random_var(shape)], no_grad_vars=1)

    @dygraph_guard
165
    def func_example_with_gradient_and_create_graph(self):
W
Weilong Wu 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        x = random_var(self.shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.shape).astype('float32')
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np))
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.shape).astype('float32')
        DDX = np.ones(self.shape).astype('float32')
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY))
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(double_grad_tmp3,
                                                    np.transpose(y_np))
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np))

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

215
    def test_all_cases(self):
216
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
217 218 219
        self.func_exception()
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
220 221
            self.func_exception()
            self.func_example_with_gradient_and_create_graph()
222
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
223

W
Weilong Wu 已提交
224

225
class TestDygraphTripleGradBradcastCase(TestCase):
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def setUp(self):
        self.sort_sum_gradient = False
        self.x_shape = [3, 2, 2]
        self.y_shape = [1, 2, 2]
        self.z_shape = [2, 2]

    def grad(self,
             outputs,
             inputs,
             grad_outputs=None,
             no_grad_vars=None,
             retain_graph=None,
             create_graph=False,
             allow_unused=False):
        fluid.set_flags({'FLAGS_sort_sum_gradient': self.sort_sum_gradient})
242 243 244 245 246 247 248
        return fluid.dygraph.grad(outputs=outputs,
                                  inputs=inputs,
                                  grad_outputs=grad_outputs,
                                  no_grad_vars=no_grad_vars,
                                  retain_graph=retain_graph,
                                  create_graph=create_graph,
                                  allow_unused=allow_unused)
249 250

    @dygraph_guard
251
    def func_example_with_gradient_and_create_graph(self):
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270
        x = random_var(self.x_shape)
        x_np = x.numpy()
        x.stop_gradient = False

        y = random_var(self.y_shape)
        y_np = y.numpy()
        y.stop_gradient = False

        z = random_var(self.z_shape)
        z_np = z.numpy()
        numel = z_np.size
        z.stop_gradient = False

        out = fluid.layers.sigmoid(paddle.matmul(x, y) + z)
        out_np = out.numpy()

        dx_actual, = self.grad([out], [x], create_graph=True)
        # Theoritical result based on math calculation
        dout = np.ones(self.x_shape).astype('float32')
271 272
        dx_expected = np.matmul(dout * out_np * (1 - out_np),
                                np.transpose(y_np, axes=(0, 2, 1)))
273 274 275 276 277 278
        self.assertTrue(np.allclose(dx_actual.numpy(), dx_expected))

        ddx_actual, = self.grad([dx_actual], [x], create_graph=True)
        # Theoritical result based on math calculation
        DDY = np.zeros(self.y_shape).astype('float32')
        DDX = np.ones(self.x_shape).astype('float32')
279 280
        double_grad_tmp1 = np.matmul(dout * out_np * (1 - out_np),
                                     np.transpose(DDY, axes=(0, 2, 1)))
281 282 283 284
        double_grad_tmp2 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        double_grad_tmp3 = (
            1 - 2 * out_np) * dout * double_grad_tmp2 * out_np * (1 - out_np)
        ddx_expected = double_grad_tmp1 + np.matmul(
285
            double_grad_tmp3, np.transpose(y_np, axes=(0, 2, 1)))
286 287 288 289 290 291 292 293
        self.assertTrue(np.allclose(ddx_actual.numpy(), ddx_expected))

        # Theoritical result based on math calculation
        d_ddout = np.zeros(self.x_shape).astype('float32')
        tmp0 = np.matmul(DDX, y_np) + np.matmul(x_np, DDY)
        tmp1 = (1 - 2 * out_np) * ((1 - 2 * out_np) * dout * tmp0 * tmp0)
        tmp2 = tmp0 * (1 - 2 * out_np) * d_ddout - 2 * dout * (
            1 - out_np) * out_np * tmp0 * tmp0
294 295
        dddx_expected = np.matmul(((tmp1 + tmp2) * out_np * (1 - out_np)),
                                  np.transpose(y_np, axes=(0, 2, 1)))
296 297 298 299 300

        ddx_actual.backward()
        dddx_grad_actual = x.gradient()
        self.assertTrue(np.allclose(dddx_grad_actual, dddx_expected))

301
    def test_all_cases(self):
302
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
303 304
        self.func_example_with_gradient_and_create_graph()
        with _test_eager_guard():
305
            self.func_example_with_gradient_and_create_graph()
306
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
307

308

W
Weilong Wu 已提交
309 310
if __name__ == '__main__':
    unittest.main()