prune_strategy.py 2.5 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ..core.strategy import Strategy
from ....framework import Program, program_guard
from .... import layers
import numpy as np

__all__ = ['SensitivePruneStrategy', 'PruneStrategy']


class SensitivePruneStrategy(Strategy):
    def __init__(self,
                 pruner=None,
                 start_epoch=0,
                 end_epoch=10,
                 delta_rate=0.20,
                 acc_loss_threshold=0.2,
                 sensitivities=None):
        super(SensitivePruneStrategy, self).__init__(start_epoch, end_epoch)
        self.pruner = pruner
        self.delta_rate = delta_rate
        self.acc_loss_threshold = acc_loss_threshold
        self.sensitivities = sensitivities


class PruneStrategy(Strategy):
    """
    The strategy that pruning weights by threshold or ratio iteratively.
    """

    def __init__(self,
                 pruner,
                 mini_batch_pruning_frequency=1,
                 start_epoch=0,
                 end_epoch=10):
        super(PruneStrategy, self).__init__(start_epoch, end_epoch)
        self.pruner = pruner
        self.mini_batch_pruning_frequency = mini_batch_pruning_frequency

    def _triger(self, context):
        return (context.batch_id % self.mini_batch_pruning_frequency == 0 and
                self.start_epoch <= context.epoch_id < self.end_epoch)

    def on_batch_end(self, context):
        if self._triger(context):
            prune_program = Program()
            with program_guard(prune_program):
                for param in context.graph.all_parameters():
                    prune_program.global_block().clone_variable(param)
                    p = prune_program.global_block().var(param.name)
                    zeros_mask = self.pruner.prune(p)
                    pruned_param = p * zeros_mask
                    layers.assign(input=pruned_param, output=param)
            context.program_exe.run(prune_program, scope=context.scope)