group_norm_op.cc 7.6 KB
Newer Older
D
Dun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/group_norm_op.h"
L
liuwei1031 已提交
16
#include <memory>
17
#include <string>
L
liuwei1031 已提交
18
#include <unordered_map>
19
#include <vector>
D
Dun 已提交
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using DataLayout = framework::DataLayout;

class GroupNormOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"),
                   "Output(Y) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Mean"),
                   "Output(Mean) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Variance"),
                   "Output(Variance) of GroupNormOp should not be null.");
    auto x_dim = ctx->GetInputDim("X");
42 43 44 45
    const DataLayout data_layout = framework::StringToDataLayout(
        ctx->Attrs().Get<std::string>("data_layout"));
    const int64_t channel_num =
        (data_layout == DataLayout::kNCHW ? x_dim[1] : x_dim[x_dim.size() - 1]);
D
Dun 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    auto batch_size = x_dim[0];
    auto groups = ctx->Attrs().Get<int>("groups");
    PADDLE_ENFORCE_LE(
        groups, channel_num,
        "'groups' must be less equal than the number of channels.");
    PADDLE_ENFORCE_GE(groups, 1, "'groups' must be greater equal than 1.");

    if (ctx->HasInput("Scale")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], channel_num);
    }
    if (ctx->HasInput("Bias")) {
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL);
      PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], channel_num);
    }

    ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
    ctx->SetOutputDim("Mean", {batch_size, groups});
    ctx->SetOutputDim("Variance", {batch_size, groups});
    ctx->ShareLoD("X", "Y");
  }
};

class GroupNormOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input tensor.");
    AddInput("Scale",
             "Scale is a 1-dimensional tensor of size C"
             "that is applied to the output.")
        .AsDispensable();
    AddInput("Bias",
             "Bias is a 1-dimensional tensor of size C "
             "that is applied to the output")
        .AsDispensable();
    AddOutput("Y", "Result after normalization.");
    AddOutput("Mean", "Mean of each group.").AsIntermediate();
    AddOutput("Variance", "Variance of each group.").AsIntermediate();

    AddAttr<float>("epsilon",
                   "Constant for numerical stability [default 1e-5].")
        .SetDefault(1e-5)
        .AddCustomChecker([](const float &epsilon) {
          PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 1.0f,
                         "'epsilon' should be between 0.0 and 1.0.");
        });
    AddAttr<int>("groups", "The number of groups that divided from channels.")
        .AddCustomChecker([](const int &groups) {
          PADDLE_ENFORCE_GT(groups, 0, "'groups' should be greater than zero.");
        });
96 97 98
    AddAttr<std::string>("data_layout",
                         "An optional string from: \"NHWC\", \"NCHW\". ")
        .SetDefault("NCHW");
D
Dun 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112
    AddComment(R"DOC(
Group Normalization

Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_
)DOC");
  }
};

class GroupNormGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    // check input
113 114
    PADDLE_ENFORCE(ctx->HasInput("Y"),
                   "Input(Y) of GroupNormOp should not be null.");
D
Dun 已提交
115 116 117 118 119 120 121
    PADDLE_ENFORCE(ctx->HasInput("Variance"),
                   "Input(Variance) of GroupNormOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) of GroupNormOp should not be null.");

    // check output
    if (ctx->HasOutput(framework::GradVarName("X"))) {
122
      ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
D
Dun 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
    }
    if (ctx->HasOutput(framework::GradVarName("Scale"))) {
      ctx->SetOutputDim(framework::GradVarName("Scale"),
                        ctx->GetInputDim("Scale"));
    }
    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    const auto *var = ctx.InputVar(framework::GradVarName("Y"));
    if (var == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
    const Tensor *t = nullptr;
    if (var->IsType<Tensor>()) {
      t = &var->Get<Tensor>();
    } else if (var->IsType<LoDTensor>()) {
      t = &var->Get<LoDTensor>();
    }
    if (t == nullptr) {
      PADDLE_THROW("can't find Y@GRAD");
    }
Y
Yu Yang 已提交
150
    return framework::OpKernelType(t->type(), ctx.GetPlace());
D
Dun 已提交
151 152 153
  }
};

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
class GroupNormGradMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *op = new framework::OpDesc();
    op->SetType("group_norm_grad");
    op->SetInput("Scale", Input("Scale"));
    op->SetInput("Bias", Input("Bias"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetInput("Y", Output("Y"));
    op->SetInput("Variance", Output("Variance"));

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetOutput(framework::GradVarName("Bias"), InputGrad("Bias"));
    op->SetOutput(framework::GradVarName("Scale"), InputGrad("Scale"));

    op->SetAttrMap(Attrs());

    return std::unique_ptr<framework::OpDesc>(op);
  }
};

177 178 179 180
DECLARE_INPLACE_OP_INFERER(GroupNormInplaceInToOut, {"X", "Y"});
DECLARE_INPLACE_OP_INFERER(GroupNormGradInplaceInToOut,
                           {framework::GradVarName("Y"),
                            framework::GradVarName("X")});
D
Dun 已提交
181 182 183 184 185 186 187 188 189 190

class GroupNormOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return {{"X", /*->*/ "Y"}};
  }
};

D
Dun 已提交
191 192 193 194 195
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(group_norm, ops::GroupNormOp, ops::GroupNormOpMaker,
D
Dun 已提交
196 197 198 199
                  ops::GroupNormOpInferVarType, ops::GroupNormGradMaker,
                  ops::GroupNormInplaceInToOut);
REGISTER_OPERATOR(group_norm_grad, ops::GroupNormGradOp,
                  ops::GroupNormGradInplaceInToOut);
D
Dun 已提交
200 201 202 203 204 205 206
REGISTER_OP_CPU_KERNEL(
    group_norm, ops::GroupNormKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    group_norm_grad,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GroupNormGradKernel<paddle::platform::CPUDeviceContext, double>);