layers.html 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Layers &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
114
<li class="toctree-l3"><a class="reference internal" href="../../../howto/dev/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
<li class="toctree-l3"><a class="reference internal" href="../../../getstarted/build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶指南</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cmd_parameter/index_cn.html">设置命令行参数</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/usage/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/cluster/cluster_train_cn.html">PaddlePaddle分布式训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_basis_cn.html">Kubernetes 简介</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/usage/k8s/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
132
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
<li class="toctree-l2"><a class="reference internal" href="../../../howto/dev/write_docs_cn.html">如何贡献/修改文档</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/deep_model/rnn/index_cn.html">RNN相关模型</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/deep_model/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能分析与调优</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../index_cn.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../model_configs.html">模型配置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../mobile/index_cn.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_android_cn.html">Android平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_ios_cn.html">iOS平台编译指南</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../mobile/cross_compiling_for_raspberry_cn.html">Raspberry Pi平台编译指南</a></li>
</ul>
</li>
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Layers</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="layers">
<h1>Layers<a class="headerlink" href="#layers" title="永久链接至标题"></a></h1>
<div class="section" id="fc">
<h2>fc<a class="headerlink" href="#fc" title="永久链接至标题"></a></h2>
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fc</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>num_flatten_dims=1</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>Fully Connected Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>input</strong> &#8211; The input tensor to the function</li>
<li><strong>size</strong> &#8211; The size of the layer</li>
<li><strong>num_flatten_dims</strong> &#8211; Number of columns in input</li>
<li><strong>param_attr</strong> &#8211; The parameters/weights to the FC Layer</li>
<li><strong>param_initializer</strong> &#8211; Initializer used for the weight/parameter. If None, XavierInitializer() is used</li>
<li><strong>bias_attr</strong> &#8211; The bias parameter for the FC layer</li>
<li><strong>bias_initializer</strong> &#8211; Initializer used for the bias. If None, then ConstantInitializer() is used</li>
<li><strong>act</strong> &#8211; Activation to be applied to the output of FC layer</li>
<li><strong>name</strong> &#8211; Name/alias of the function</li>
<li><strong>main_program</strong> &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> &#8211; Name of the startup program</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>This function can take in multiple inputs and performs the Fully Connected
function (linear transformation) on top of each of them.
So for input x, the output will be : Wx + b. Where W is the parameter,
b the bias and x is the input.</p>
<p>The function also applies an activation (non-linearity) on top of the
output, if activation is passed in the input.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
</dd></dl>

246 247 248
</div>
<div class="section" id="embedding">
<h2>embedding<a class="headerlink" href="#embedding" title="永久链接至标题"></a></h2>
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>param_attr=None</em>, <em>dtype='float32'</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>Embedding Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>param_initializer</strong> &#8211; </li>
<li><strong>input</strong> &#8211; The input to the function</li>
<li><strong>size</strong> &#8211; The size of the layer</li>
<li><strong>is_sparse</strong> &#8211; A flag that decleares whether the input is sparse</li>
<li><strong>param_attr</strong> &#8211; Parameters for this layer</li>
<li><strong>dtype</strong> &#8211; The type of data : float32, float_16, int etc</li>
<li><strong>main_program</strong> &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> &#8211; Name of the startup program</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>This function can take in the input (which is a vector of IDs) and
performs a lookup in the lookup_table using these IDs, to result into
the embedding of each ID in the input.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
</dd></dl>

278 279 280
</div>
<div class="section" id="dynamic-lstm">
<h2>dynamic_lstm<a class="headerlink" href="#dynamic-lstm" title="永久链接至标题"></a></h2>
281 282 283 284 285
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dynamic_lstm</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>use_peepholes=True</em>, <em>is_reverse=False</em>, <em>gate_activation='sigmoid'</em>, <em>cell_activation='tanh'</em>, <em>candidate_activation='tanh'</em>, <em>dtype='float32'</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

286 287 288
</div>
<div class="section" id="data">
<h2>data<a class="headerlink" href="#data" title="永久链接至标题"></a></h2>
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">data</code><span class="sig-paren">(</span><em>name</em>, <em>shape</em>, <em>append_batch_size=True</em>, <em>dtype='float32'</em>, <em>lod_level=0</em>, <em>type=VarType.LOD_TENSOR</em>, <em>main_program=None</em>, <em>startup_program=None</em>, <em>stop_gradient=True</em><span class="sig-paren">)</span></dt>
<dd><p>Data Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>name</strong> &#8211; The name/alias of the function</li>
<li><strong>shape</strong> &#8211; Tuple declaring the shape.</li>
<li><strong>append_batch_size</strong> &#8211; Whether or not to append the data as a batch.</li>
<li><strong>dtype</strong> &#8211; The type of data : float32, float_16, int etc</li>
<li><strong>type</strong> &#8211; The output type. By default it is LOD_TENSOR.</li>
<li><strong>lod_level</strong> (<em>int</em>) &#8211; The LoD Level. 0 means the input data is not a sequence.</li>
<li><strong>main_program</strong> &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> &#8211; Name of the startup program</li>
<li><strong>stop_gradient</strong> &#8211; A boolean that mentions whether gradient should flow.</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>This function takes in input and based on whether data has
to be returned back as a minibatch, it creates the global variable using
the helper functions. The global variables can be accessed by all the
following operations and layers in the graph.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
</dd></dl>

320 321 322
</div>
<div class="section" id="mean">
<h2>mean<a class="headerlink" href="#mean" title="永久链接至标题"></a></h2>
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mean</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mean Operator.</p>
<p>Out is a scalar which is the mean of all elements in X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>x</strong> &#8211; The input of mean op
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">The output of mean op</td>
</tr>
</tbody>
</table>
</dd></dl>

341 342 343
</div>
<div class="section" id="mul">
<h2>mul<a class="headerlink" href="#mul" title="永久链接至标题"></a></h2>
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">mul</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Mul Operator.</p>
<p>This operator is used to perform matrix multiplication for input X and Y.</p>
<p>The equation is:</p>
<blockquote>
<div>$$Out = X * Y$$</div></blockquote>
<p>Both the input <cite>X</cite> and <cite>Y</cite> can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input <cite>X</cite>.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The first input of mul op
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; The second input of mul op
Duplicable: False  Optional: False</li>
<li><strong>x_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>X</cite>,
in that case, tensors will be reshaped to a matrix. The matrix&#8217;s first
dimension(column length) will be the product of tensor&#8217;s last
<cite>num_col_dims</cite> dimensions, and the matrix&#8217;s second dimension(row length)
will be the product of tensor&#8217;s first <cite>rank - num_col_dims</cite> dimensions.</li>
<li><strong>y_num_col_dims</strong> (<em>INT</em>) &#8211; (int, default 1) mul_op can take tensors with more than two dimensions as input <cite>Y</cite>,
in that case, tensors will be reshaped to a matrix. Just like input <cite>X</cite>.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output of mul op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

380 381 382
</div>
<div class="section" id="elementwise-add">
<h2>elementwise_add<a class="headerlink" href="#elementwise-add" title="永久链接至标题"></a></h2>
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_add</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Add Operator.</p>
<p>The equation is:</p>
<p>$Out = X + Y$</p>
<p>X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X.</p>
<p>There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.</p>
<p>For case 2:
Y will be broadcasted to match the shape of X and axis should be
the starting dimension index for broadcasting Y onto X.</p>
<p class="rubric">example</p>
<p>shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0</p>
<p>Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) The first input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor) The second input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1) The starting dimension index for broadcasting Y onto X</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output of elementwise op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

425 426 427
</div>
<div class="section" id="elementwise-div">
<h2>elementwise_div<a class="headerlink" href="#elementwise-div" title="永久链接至标题"></a></h2>
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">elementwise_div</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Limited Elementwise Div Operator.</p>
<p>The equation is:</p>
<p>$Out = X / Y$</p>
<p>X is a tensor of any dimension and the dimensions of tensor Y must be smaller than
or equal to the dimensions of X.</p>
<p>There are two cases for this operator:
1. The shape of Y is same with X;
2. The shape of Y is a subset of X.</p>
<p>For case 2:
Y will be broadcasted to match the shape of X and axis should be
the starting dimension index for broadcasting Y onto X.</p>
<p class="rubric">example</p>
<p>shape(X) = (2, 3, 4, 5), shape(Y) = (,)
shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5)
shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0</p>
<p>Both the input X and Y can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input X.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) The first input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>y</strong> &#8211; (Tensor) The second input tensor of elementwise op
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INT</em>) &#8211; (int, default -1) The starting dimension index for broadcasting Y onto X</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output of elementwise op</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

470 471 472
</div>
<div class="section" id="dropout">
<h2>dropout<a class="headerlink" href="#dropout" title="永久链接至标题"></a></h2>
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">dropout</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Dropout Operator.</p>
<p>Dropout refers to randomly dropping out units in a nerual network. It is a
regularization technique for reducing overfitting by preventing neuron
co-adaption during training. The dropout operator randomly set (according to
the given dropout probability) the outputs of some units to zero, while others
are set equal to their corresponding inputs.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input of dropout op.
Duplicable: False  Optional: False</li>
<li><strong>dropout_prob</strong> (<em>FLOAT</em>) &#8211; Probability of setting units to zero.</li>
<li><strong>is_test</strong> (<em>BOOLEAN</em>) &#8211; True if in test phase.</li>
<li><strong>seed</strong> (<em>INT</em>) &#8211; Dropout random seed.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output of dropout op.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

502 503 504
</div>
<div class="section" id="reshape">
<h2>reshape<a class="headerlink" href="#reshape" title="永久链接至标题"></a></h2>
505 506 507 508 509 510 511 512 513 514
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
Given a 2-D tensor X with 2 rows and 2 columns</p>
<blockquote>
<div>[[1, 2], [3, 4]]</div></blockquote>
<p>and target shape = [1, 4], the reshape operator will transform
515
the tensor X into a 2-D tensor:</p>
516
<blockquote>
517
<div>[[1, 2, 3, 4]]</div></blockquote>
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input tensor of reshape operator.
Duplicable: False  Optional: False</li>
<li><strong>shape</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;) Target shape of reshape operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output tensor of reshape operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

536 537 538
</div>
<div class="section" id="sigmoid">
<h2>sigmoid<a class="headerlink" href="#sigmoid" title="永久链接至标题"></a></h2>
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sigmoid</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Sigmoid Activation Operator</p>
<p>$$y = frac{1}{1 + e^{-x}}$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><strong>x</strong> &#8211; Input of Sigmoid operator
Duplicable: False  Optional: False</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body">Output of Sigmoid operator</td>
</tr>
</tbody>
</table>
</dd></dl>

557 558 559
</div>
<div class="section" id="scale">
<h2>scale<a class="headerlink" href="#scale" title="永久链接至标题"></a></h2>
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">scale</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Scale operator</p>
<p>$$Out = scale*X$$</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor) Input tensor of scale operator.
Duplicable: False  Optional: False</li>
<li><strong>scale</strong> (<em>FLOAT</em>) &#8211; (float, default 0)The scaling factor of the scale operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">(Tensor) Output tensor of scale operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

583 584 585
</div>
<div class="section" id="id1">
<h2>reshape<a class="headerlink" href="#id1" title="永久链接至标题"></a></h2>
586 587 588 589 590 591 592 593 594 595
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">reshape</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Reshape Operator.</p>
<p>Reshape Input(X) into the shape specified by Attr(shape).</p>
<p>An example:
Given a 2-D tensor X with 2 rows and 2 columns</p>
<blockquote>
<div>[[1, 2], [3, 4]]</div></blockquote>
<p>and target shape = [1, 4], the reshape operator will transform
596
the tensor X into a 2-D tensor:</p>
597
<blockquote>
598
<div>[[1, 2, 3, 4]]</div></blockquote>
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; The input tensor of reshape operator.
Duplicable: False  Optional: False</li>
<li><strong>shape</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;) Target shape of reshape operator.</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">The output tensor of reshape operator.</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

617 618 619
</div>
<div class="section" id="transpose">
<h2>transpose<a class="headerlink" href="#transpose" title="永久链接至标题"></a></h2>
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">transpose</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Transpose Operator.</p>
<p>The input tensor will be permuted according to the axis values given.
The op functions similar to how numpy.transpose works in python.
For example:</p>
<blockquote>
<div><p>&gt;&gt; input = numpy.arange(6).reshape((2,3))
&gt;&gt; input
array([[0, 1, 2],</p>
<blockquote>
<div>[3, 4, 5]])</div></blockquote>
<p>&gt;&gt; axis = [1, 0]
&gt;&gt; output = input.transpose(axis)
&gt;&gt; output
array([[0, 3],</p>
<blockquote>
<div><dl class="docutils">
<dt>[1, 4],</dt>
<dd>[2, 5]])</dd>
</dl>
</div></blockquote>
</div></blockquote>
<p>So, given a input tensor of shape(N, C, H, W) and the axis is {0, 2, 3, 1},
the output tensor shape will be (N, H, W, C)</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>x</strong> &#8211; (Tensor)The input tensor, tensors with rank at most 6 are supported
Duplicable: False  Optional: False</li>
<li><strong>axis</strong> (<em>INTS</em>) &#8211; (vector&lt;int&gt;)A list of values, and the size of the list should be the same with the input tensor rank, the tensor will permute the axes according the the values given</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first last">(Tensor)The output tensor</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

664 665 666 667 668 669
</div>
<div class="section" id="sigmoid-cross-entropy-with-logits">
<h2>sigmoid_cross_entropy_with_logits<a class="headerlink" href="#sigmoid-cross-entropy-with-logits" title="永久链接至标题"></a></h2>
</div>
<div class="section" id="cast">
<h2>cast<a class="headerlink" href="#cast" title="永久链接至标题"></a></h2>
670 671 672 673 674 675 676
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cast</code><span class="sig-paren">(</span><em>x</em>, <em>dtype</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function takes in the input with input_dtype
and casts it to the output_dtype as the output.</p>
</dd></dl>

677 678 679
</div>
<div class="section" id="concat">
<h2>concat<a class="headerlink" href="#concat" title="永久链接至标题"></a></h2>
680 681 682 683 684 685 686
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">concat</code><span class="sig-paren">(</span><em>input</em>, <em>axis</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function concats the input along the axis mentioned
and returns that as the output.</p>
</dd></dl>

687 688 689
</div>
<div class="section" id="sums">
<h2>sums<a class="headerlink" href="#sums" title="永久链接至标题"></a></h2>
690 691 692 693 694 695 696
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sums</code><span class="sig-paren">(</span><em>input</em>, <em>out=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function takes in the input and performs the sum operation on it
and returns that as the output.</p>
</dd></dl>

697 698 699
</div>
<div class="section" id="linear-chain-crf">
<h2>linear_chain_crf<a class="headerlink" href="#linear-chain-crf" title="永久链接至标题"></a></h2>
700 701 702 703 704
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">linear_chain_crf</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>param_attr=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

705 706 707
</div>
<div class="section" id="assign">
<h2>assign<a class="headerlink" href="#assign" title="永久链接至标题"></a></h2>
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">embedding</code><span class="sig-paren">(</span><em>input</em>, <em>size</em>, <em>is_sparse=False</em>, <em>param_attr=None</em>, <em>dtype='float32'</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>Embedding Layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>param_initializer</strong> &#8211; </li>
<li><strong>input</strong> &#8211; The input to the function</li>
<li><strong>size</strong> &#8211; The size of the layer</li>
<li><strong>is_sparse</strong> &#8211; A flag that decleares whether the input is sparse</li>
<li><strong>param_attr</strong> &#8211; Parameters for this layer</li>
<li><strong>dtype</strong> &#8211; The type of data : float32, float_16, int etc</li>
<li><strong>main_program</strong> &#8211; Name of the main program that calls this</li>
<li><strong>startup_program</strong> &#8211; Name of the startup program</li>
</ul>
</td>
</tr>
</tbody>
</table>
<p>This function can take in the input (which is a vector of IDs) and
performs a lookup in the lookup_table using these IDs, to result into
the embedding of each ID in the input.</p>
<p>All the input variables of this function are passed in as local variables
to the LayerHelper constructor.</p>
</dd></dl>

737 738 739
</div>
<div class="section" id="split-lod-tensor">
<h2>split_lod_tensor<a class="headerlink" href="#split-lod-tensor" title="永久链接至标题"></a></h2>
740 741 742 743 744
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">split_lod_tensor</code><span class="sig-paren">(</span><em>input</em>, <em>mask</em>, <em>level=0</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

745 746 747
</div>
<div class="section" id="merge-lod-tensor">
<h2>merge_lod_tensor<a class="headerlink" href="#merge-lod-tensor" title="永久链接至标题"></a></h2>
748 749 750 751 752
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">merge_lod_tensor</code><span class="sig-paren">(</span><em>in_true</em>, <em>in_false</em>, <em>x</em>, <em>mask</em>, <em>level=0</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

753 754 755
</div>
<div class="section" id="cos-sim">
<h2>cos_sim<a class="headerlink" href="#cos-sim" title="永久链接至标题"></a></h2>
756 757 758 759 760 761 762
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cos_sim</code><span class="sig-paren">(</span><em>X</em>, <em>Y</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the cosine similarity between two tensors
X and Y and returns that as the output.</p>
</dd></dl>

763 764 765
</div>
<div class="section" id="cross-entropy">
<h2>cross_entropy<a class="headerlink" href="#cross-entropy" title="永久链接至标题"></a></h2>
766 767 768 769 770 771
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">cross_entropy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes cross_entropy using the input and label.</p>
</dd></dl>

772 773 774
</div>
<div class="section" id="square-error-cost">
<h2>square_error_cost<a class="headerlink" href="#square-error-cost" title="永久链接至标题"></a></h2>
775 776 777 778 779 780 781
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">square_error_cost</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This functions returns the squared error cost using the input and label.
The output is appending the op to do the above.</p>
</dd></dl>

782 783 784
</div>
<div class="section" id="accuracy">
<h2>accuracy<a class="headerlink" href="#accuracy" title="永久链接至标题"></a></h2>
785 786 787 788 789 790 791
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">accuracy</code><span class="sig-paren">(</span><em>input</em>, <em>label</em>, <em>k=1</em>, <em>correct=None</em>, <em>total=None</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function computes the accuracy using the input and label.
The output is the top_k inputs and their indices.</p>
</dd></dl>

792 793 794
</div>
<div class="section" id="sequence-conv">
<h2>sequence_conv<a class="headerlink" href="#sequence-conv" title="永久链接至标题"></a></h2>
795 796 797 798 799 800 801 802
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_conv</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size=3</em>, <em>filter_stride=1</em>, <em>padding=None</em>, <em>bias_attr=None</em>, <em>param_attr=None</em>, <em>act=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given
in the input parameters to the function.</p>
</dd></dl>

803 804 805
</div>
<div class="section" id="conv2d">
<h2>conv2d<a class="headerlink" href="#conv2d" title="永久链接至标题"></a></h2>
806 807
<dl class="function">
<dt>
808
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>filter_size</em>, <em>stride=None</em>, <em>padding=None</em>, <em>groups=None</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>act=None</em>, <em>name=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
809 810 811 812 813 814 815
<dd><p>This function creates the op for a 2-dimensional Convolution.
This is performed using the parameters of filters(size, dimensionality etc)
, stride and other configurations for a Convolution operation.
This funciton can also append an activation on top of the
conv-2d output, if mentioned in the input parameters.</p>
</dd></dl>

816 817 818
</div>
<div class="section" id="sequence-pool">
<h2>sequence_pool<a class="headerlink" href="#sequence-pool" title="永久链接至标题"></a></h2>
819 820 821 822 823 824 825 826
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">sequence_pool</code><span class="sig-paren">(</span><em>input</em>, <em>pool_type</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>This function add the operator for sequence pooling.
This is applied on top of the input using pool_type mentioned
in the parameters.</p>
</dd></dl>

827 828 829
</div>
<div class="section" id="pool2d">
<h2>pool2d<a class="headerlink" href="#pool2d" title="永久链接至标题"></a></h2>
830 831
<dl class="function">
<dt>
832
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">pool2d</code><span class="sig-paren">(</span><em>input</em>, <em>pool_size</em>, <em>pool_type</em>, <em>pool_stride=None</em>, <em>pool_padding=None</em>, <em>global_pooling=False</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
833 834 835 836
<dd><p>This function adds the operator for pooling in 2 dimensions, using the
pooling configurations mentioned in input parameters.</p>
</dd></dl>

837 838 839
</div>
<div class="section" id="batch-norm">
<h2>batch_norm<a class="headerlink" href="#batch-norm" title="永久链接至标题"></a></h2>
840 841 842 843 844 845 846
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">batch_norm</code><span class="sig-paren">(</span><em>input</em>, <em>act=None</em>, <em>is_test=False</em>, <em>momentum=0.9</em>, <em>epsilon=1e-05</em>, <em>param_attr=None</em>, <em>bias_attr=None</em>, <em>data_layout='NCHW'</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters.</p>
</dd></dl>

847 848 849
</div>
<div class="section" id="beam-search-decode">
<h2>beam_search_decode<a class="headerlink" href="#beam-search-decode" title="永久链接至标题"></a></h2>
850 851 852 853 854
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">beam_search_decode</code><span class="sig-paren">(</span><em>ids</em>, <em>scores</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

855 856 857 858 859 860
</div>
<div class="section" id="lstm">
<h2>lstm<a class="headerlink" href="#lstm" title="永久链接至标题"></a></h2>
</div>
<div class="section" id="lod-rank-table">
<h2>lod_rank_table<a class="headerlink" href="#lod-rank-table" title="永久链接至标题"></a></h2>
861 862 863 864 865 866 867
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_rank_table</code><span class="sig-paren">(</span><em>x</em>, <em>level=0</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator for creating a LOD_RANK_TABLE
using the input x.</p>
</dd></dl>

868 869 870
</div>
<div class="section" id="max-sequence-len">
<h2>max_sequence_len<a class="headerlink" href="#max-sequence-len" title="永久链接至标题"></a></h2>
871 872 873 874 875 876 877
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">max_sequence_len</code><span class="sig-paren">(</span><em>rank_table</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to calculate the length of
max seqence through input rank_table(should be a lod_rank_table)</p>
</dd></dl>

878 879 880
</div>
<div class="section" id="topk">
<h2>topk<a class="headerlink" href="#topk" title="永久链接至标题"></a></h2>
881 882 883 884 885
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">topk</code><span class="sig-paren">(</span><em>input</em>, <em>k</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

886 887 888
</div>
<div class="section" id="lod-tensor-to-array">
<h2>lod_tensor_to_array<a class="headerlink" href="#lod-tensor-to-array" title="永久链接至标题"></a></h2>
889 890 891 892 893 894 895
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">lod_tensor_to_array</code><span class="sig-paren">(</span><em>x</em>, <em>table</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to convert an LOD_Tensor to
an array.</p>
</dd></dl>

896 897 898
</div>
<div class="section" id="array-to-lod-tensor">
<h2>array_to_lod_tensor<a class="headerlink" href="#array-to-lod-tensor" title="永久链接至标题"></a></h2>
899 900 901 902 903 904 905
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_to_lod_tensor</code><span class="sig-paren">(</span><em>x</em>, <em>table</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to convert an array to a
LOD_Tensor.</p>
</dd></dl>

906 907 908
</div>
<div class="section" id="fill-constant">
<h2>fill_constant<a class="headerlink" href="#fill-constant" title="永久链接至标题"></a></h2>
909 910 911 912 913 914 915 916
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>value</em>, <em>out=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates a tensor , with shape as mentioned in the input and
specified dtype and fills this up with a constant value that
comes in the input. It also sets the stop_gradient to be True.</p>
</dd></dl>

917 918 919
</div>
<div class="section" id="fill-constant-batch-size-like">
<h2>fill_constant_batch_size_like<a class="headerlink" href="#fill-constant-batch-size-like" title="永久链接至标题"></a></h2>
920 921 922 923 924
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">fill_constant_batch_size_like</code><span class="sig-paren">(</span><em>input</em>, <em>shape</em>, <em>dtype</em>, <em>value</em>, <em>input_dim_idx=0</em>, <em>output_dim_idx=0</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

925 926 927
</div>
<div class="section" id="ones">
<h2>ones<a class="headerlink" href="#ones" title="永久链接至标题"></a></h2>
928 929 930 931 932 933 934
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">ones</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the same function as fill_constant() declared above
with the constant value being 1.0.</p>
</dd></dl>

935 936 937
</div>
<div class="section" id="zeros">
<h2>zeros<a class="headerlink" href="#zeros" title="永久链接至标题"></a></h2>
938 939 940 941 942 943 944
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">zeros</code><span class="sig-paren">(</span><em>shape</em>, <em>dtype</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function performs the same function as fill_constant() declared above
with the constant value being 0.0.</p>
</dd></dl>

945 946 947
</div>
<div class="section" id="increment">
<h2>increment<a class="headerlink" href="#increment" title="永久链接至标题"></a></h2>
948 949 950 951 952 953 954 955
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">increment</code><span class="sig-paren">(</span><em>x</em>, <em>value=1.0</em>, <em>in_place=True</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to increment each value in the input
<cite>x</cite> by an amount: <cite>value</cite> as mentioned in the input parameter. This
operation is performed in-place by default.</p>
</dd></dl>

956 957 958
</div>
<div class="section" id="array-write">
<h2>array_write<a class="headerlink" href="#array-write" title="永久链接至标题"></a></h2>
959 960 961 962 963 964 965
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_write</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>array=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to write the data out as a
LOD_TENSOR_ARRAY.</p>
</dd></dl>

966 967 968
</div>
<div class="section" id="create-array">
<h2>create_array<a class="headerlink" href="#create-array" title="永久链接至标题"></a></h2>
969 970 971 972 973
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">create_array</code><span class="sig-paren">(</span><em>dtype</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

974 975 976
</div>
<div class="section" id="less-than">
<h2>less_than<a class="headerlink" href="#less-than" title="永久链接至标题"></a></h2>
977 978 979 980 981
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">less_than</code><span class="sig-paren">(</span><em>x</em>, <em>y</em>, <em>cond=None</em>, <em>main_program=None</em>, <em>**ignored</em><span class="sig-paren">)</span></dt>
<dd></dd></dl>

982 983 984
</div>
<div class="section" id="array-read">
<h2>array_read<a class="headerlink" href="#array-read" title="永久链接至标题"></a></h2>
985 986 987 988 989 990 991
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_read</code><span class="sig-paren">(</span><em>array</em>, <em>i</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to read the data in as a
LOD_TENSOR_ARRAY.</p>
</dd></dl>

992 993 994
</div>
<div class="section" id="shrink-memory">
<h2>shrink_memory<a class="headerlink" href="#shrink-memory" title="永久链接至标题"></a></h2>
995 996 997 998 999 1000 1001
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">shrink_memory</code><span class="sig-paren">(</span><em>x</em>, <em>i</em>, <em>table</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to shrink_rnn_memory using the RankTable
as mentioned in the input parameter.</p>
</dd></dl>

1002 1003 1004
</div>
<div class="section" id="array-length">
<h2>array_length<a class="headerlink" href="#array-length" title="永久链接至标题"></a></h2>
1005 1006 1007 1008 1009 1010 1011
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">array_length</code><span class="sig-paren">(</span><em>array</em>, <em>main_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>This function creates an operator to find the length of the
LOD_TENSOR_ARRAY.</p>
</dd></dl>

1012 1013 1014
</div>
<div class="section" id="conv2d-transpose">
<h2>conv2d_transpose<a class="headerlink" href="#conv2d-transpose" title="永久链接至标题"></a></h2>
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
<dl class="function">
<dt>
<code class="descclassname">paddle.v2.fluid.layers.</code><code class="descname">conv2d_transpose</code><span class="sig-paren">(</span><em>input</em>, <em>num_filters</em>, <em>output_size=None</em>, <em>filter_size=None</em>, <em>padding=None</em>, <em>stride=None</em>, <em>param_attr=None</em>, <em>main_program=None</em>, <em>startup_program=None</em><span class="sig-paren">)</span></dt>
<dd><p>The transpose of conv2d layer.</p>
<p>This layer is also known as deconvolution layer.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first simple">
<li><strong>input</strong> (<em>Variable</em>) &#8211; The input image with [N, C, H, W] format.</li>
<li><strong>num_filters</strong> (<em>int</em>) &#8211; The number of filter. It is as same as the output
image channel.</li>
<li><strong>output_size</strong> (<em>int|tuple|None</em>) &#8211; The output image size. If output size is a
tuple, it must contain two integers, (image_H, image_W). This
parameter only works when filter_size is None.</li>
<li><strong>filter_size</strong> (<em>int|tuple|None</em>) &#8211; The filter size. If filter_size is a tuple,
it must contain two integers, (filter_size_H, filter_size_W).
Otherwise, the filter will be a square.  None if use output size to
calculate filter_size</li>
<li><strong>padding</strong> (<em>int|tuple</em>) &#8211; The padding size. If padding is a tuple, it must
contain two integers, (padding_H, padding_W). Otherwise, the
padding_H = padding_W = padding.</li>
<li><strong>stride</strong> (<em>int|tuple</em>) &#8211; The stride size. If stride is a tuple, it must
contain two integers, (stride_H, stride_W). Otherwise, the
stride_H = stride_W = stride.</li>
<li><strong>param_attr</strong> &#8211; Parameter Attribute.</li>
<li><strong>main_program</strong> (<em>Program</em>) &#8211; the main program</li>
<li><strong>startup_program</strong> (<em>Program</em>) &#8211; the startup program</li>
</ul>
</td>
</tr>
<tr class="field-even field"><th class="field-name">返回:</th><td class="field-body"><p class="first">Output image.</p>
</td>
</tr>
<tr class="field-odd field"><th class="field-name">返回类型:</th><td class="field-body"><p class="first last">Variable</p>
</td>
</tr>
</tbody>
</table>
</dd></dl>

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
</div>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>