elementwise_add_compute_test.cc 4.6 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/lite/kernels/arm/elementwise_add_compute.h"
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace arm {

TEST(elementwise_add_arm, retrive_op) {
  auto elementwise_add =
      KernelRegistry::Global().Create<TARGET(kARM), PRECISION(kFloat)>(
          "elementwise_add");
  ASSERT_FALSE(elementwise_add.empty());
  ASSERT_TRUE(elementwise_add.front());
}

TEST(elementwise_add_arm, init) {
  ElementwiseAddCompute elementwise_add;
  ASSERT_EQ(elementwise_add.precision(), PRECISION(kFloat));
  ASSERT_EQ(elementwise_add.target(), TARGET(kARM));
}

template <typename dtype>
void elementwise_add_compute_ref(const operators::ElementwiseParam& param) {
  const dtype* x_data = param.X->data<const dtype>();
  const dtype* y_data = param.Y->data<const dtype>();
  dtype* out_data = param.Out->mutable_data<dtype>();
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
  auto x_dims = param.X->dims();
  auto y_dims = param.Y->dims();
  int axis = param.axis;
  int batch = 1;
  int channels = 1;
  int num = 1;
  for (int i = 0; i < axis; ++i) {
    batch *= x_dims[i];
  }
  for (int i = 0; i < y_dims.size(); ++i) {
    channels *= y_dims[i];
  }
  for (int i = y_dims.size() + axis; i < x_dims.size(); ++i) {
    num *= x_dims[i];
  }
  for (int i = 0; i < batch; ++i) {
    for (int j = 0; j < channels; ++j) {
      int offset = (i * channels + j) * num;
      const dtype* din_ptr = x_data + offset;
      const dtype diny_data = y_data[j];
      dtype* dout_ptr = dout + offset;
      for (int k = 0; k < num; ++k) {
        dout_ptr[k] = din_ptr[k] + diny_data;
      }
    }
T
tensor-tang 已提交
69 70 71 72 73 74
  }
}

TEST(elementwise_add, compute) {
  ElementwiseAddCompute elementwise_add;
  operators::ElementwiseParam param;
75
  lite::Tensor x, y, output, output_ref;
T
tensor-tang 已提交
76

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
  for (auto n : {1, 3, 4, 11}) {
    for (auto c : {1, 3, 4, 11}) {
      for (auto h : {1, 3, 4, 11}) {
        for (auto w : {1, 3, 4, 11}) {
          for (auto axis : {-1, 0, 1, 2, 3}) {
            for (auto yd{{n},
                         {c},
                         {h},
                         {w},
                         {n, c},
                         {c, h},
                         {h, w},
                         {n, c, h},
                         {c, h, w},
                         {n, c, h, w}}) {
              auto x_dim = DDim(std::vector<int64_t>({n, c, h, w}));
              auto y_dim = DDim(std::vector<int64_t>(yd));
              int axis_t = axis < 0 ? x_dim.size() - y_dim.size() : axis;
T
tensor-tang 已提交
95

96 97 98 99 100 101
              if (axis_t + y_dim.size() > 4) continue;
              bool flag = false;
              for (int i = 0; i < y_dim.size(); i++) {
                if (x_dim[i + axis_t] != y_dim[i]) flag = true;
              }
              if (flag) continue;
T
tensor-tang 已提交
102

103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
              x.Resize(x_dim);
              y.Resize(y_dim);
              output.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
              output_ref.Resize(DDim(std::vector<int64_t>({n, c, h, w})));
              auto* x_data = x.mutable_data<float>();
              auto* output_data = output.mutable_data<float>();
              auto* output_ref_data = output_ref.mutable_data<float>();
              for (int i = 0; i < x.dims().production(); i++) {
                x_data[i] = i;
              }
              for (int i = 0; i < y.dims().production(); i++) {
                y_data[i] = i;
              }
              param.X = &x;
              param.Y = &y;
              param.axis = axis;
              param.Out = &output;
              softmax.SetParam(param);
              softmax.Run();
              param.Out = &output_ref;
              elementwise_add_compute_ref<float>(param);
              for (int i = 0; i < out.dims().production(); i++) {
                EXPECT_NEAR(output_data[i], output_ref_data[i], 1e-5);
              }
            }
          }
        }
      }
    }
T
tensor-tang 已提交
132 133 134 135 136 137 138 139 140
  }
}

}  // namespace arm
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

USE_LITE_KERNEL(elementwise_add, kARM, kFloat, kNCHW, def);