gru_op.h 7.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#pragma once
16 17 18
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
19 20 21 22
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
G
guosheng 已提交
23 24 25 26

namespace paddle {
namespace operators {

G
guosheng 已提交
27 28 29
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
30 31
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
32 33
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
G
guosheng 已提交
34
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
35
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
36
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
37
  row_shuffle(ctx, src, index_lod, dst, indexed_src);
G
guosheng 已提交
38 39
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
G
guosheng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
65
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
66 67 68 69 70
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
71 72
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
73 74 75
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
76

G
guosheng 已提交
77
    Tensor ordered_h0, ordered_h0_grad;
D
dzhwinter 已提交
78 79 80

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
81
    if (h0) {
Q
QI JUN 已提交
82 83
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
84 85 86
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
87 88
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
89 90
    }

G
guosheng 已提交
91 92
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
93
    to_batch(dev_ctx, *hidden_grad, &batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
94

95
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
96 97
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
98 99
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

100
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
101
    if (weight_grad) {
G
guosheng 已提交
102
      gru_grad.gate_weight_grad =
G
guosheng 已提交
103
          weight_grad->mutable_data<T>(context.GetPlace());
104
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
105
      gru_grad.state_weight_grad =
G
guosheng 已提交
106 107
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
108 109
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
110 111 112 113
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
114 115 116 117
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
118 119 120 121 122 123
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
124
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
125
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
126
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
127 128

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
129
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
130
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
131
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
132 133
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
134
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
135
      if (n == 0) {
G
guosheng 已提交
136 137
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
138
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
139 140 141
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
142
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
143
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
144
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
145 146
      }

Q
QI JUN 已提交
147
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
148 149
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
150 151 152
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
153
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
154
      batch_gate_grad.set_lod(batch_gate->lod());
155
      to_seq(dev_ctx, batch_gate_grad, input_grad);
G
guosheng 已提交
156 157 158
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
159
      math::ColwiseSum<DeviceContext, T> col_sum;
160
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
161
    }
G
guosheng 已提交
162
    if (h0 && h0_grad) {
Q
QI JUN 已提交
163 164
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
165
    }
G
guosheng 已提交
166 167 168 169 170 171 172 173 174
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle