moe_layer.py 20.0 KB
Newer Older
R
Roc 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
R
Roc 已提交
14 15 16 17 18 19 20
#
# The file has been adapted from the file:
#     https://github.com/laekov/fastmoe/blob/master/fmoe/layers.py
#     Git commit hash: 295a615aacce7e54a37e7935274ba15e901c78e4
# We retain the following license from the original files:
#     Copyright 2021, Jiaao He. All rights reserved.
#   Licensed under the Apache License, Version 2.0 (the "License").
R
Roc 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33

import collections
import math

import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.distributed.utils import global_scatter, global_gather
from paddle.distributed import alltoall, all_gather

from paddle.distributed.fleet.meta_parallel import get_rng_state_tracker
from paddle.distributed import fleet
34
from paddle.autograd import PyLayer, EagerPyLayer
R
Roc 已提交
35 36 37 38
from .gate import NaiveGate, GShardGate, SwitchGate, BaseGate
from .utils import count_by_gate
from paddle.distributed.fleet.meta_parallel.pp_utils.utils import _hp_recompute
from paddle import fluid
39
from paddle.fluid.framework import in_dygraph_mode
R
Roc 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68


def _local_scatter(inp, pos):
    if pos.shape != [0]:
        inp_buf = paddle.index_select(inp, pos, 0)
    else:
        inp_buf = paddle.empty([0, inp.shape[1]], dtype=inp.dtype)
    return inp_buf


def _local_gather(inp, pos, out_batch_size, maybe_overlap=True):
    if pos.shape != [0]:
        origin_dtype = inp.dtype
        inp = paddle.cast(inp, dtype="float32")
        inp_buf = paddle.scatter(
            paddle.zeros(
                shape=[out_batch_size, inp.shape[-1]], dtype="float32"),
            pos,
            inp,
            overwrite=True)
        inp_buf = paddle.cast(inp_buf, dtype=origin_dtype)
    else:
        inp_buf = paddle.zeros([out_batch_size, inp.shape[-1]], dtype=inp.dtype)
    return inp_buf


def _all_gather(tensor, group=None, use_calc_stream=True):
    if group is not None and not group.is_member():
        return
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

    if in_dygraph_mode():
        group = paddle.distributed.collective._get_default_group(
        ) if group is None else group
        tensor_shape = list(tensor.shape)
        tensor_shape[0] *= group.nranks
        out = paddle.empty(tensor_shape, tensor.dtype)

        task = group.process_group.all_gather(tensor, out)
        task.wait()
        return out
    else:
        ring_id = 0 if group is None else group.id
        nranks = paddle.distributed.collective._get_global_group(
        ).nranks if group is None else group.nranks
        return paddle._C_ops.c_allgather(tensor, 'use_calc_stream',
                                         use_calc_stream, 'ring_id', ring_id,
                                         'nranks', nranks)
R
Roc 已提交
87 88


R
Roc 已提交
89
class MoEScatter(PyLayer):
R
Roc 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    r"""
    Scatter input samples from [batch x sequences] to contiguous alone experts.
    If `world_size` is greater than 1, the samples will first be locally
    scattered, and then exchanged across workers.
    """

    @staticmethod
    def forward(ctx,
                inp,
                pos,
                local_expert_count,
                global_expert_count,
                fwd_batch_size,
                world_size,
                group=None):
        local_input_buf = _local_scatter(inp, pos)
        if world_size > 1:
            global_input_buf = global_scatter(
                local_input_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            global_input_buf = local_input_buf

        ctx.moe_args = inp.shape[0], world_size, group

        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return global_input_buf

    @staticmethod
    def backward(ctx, grad):
        (pos, local_expert_count, global_expert_count) = ctx.saved_tensor()
        (inp_batch_size, world_size, group) = ctx.moe_args

        if world_size > 1:
            local_grad_in = global_gather(
                grad, local_expert_count, global_expert_count, group=group)
        else:
            local_grad_in = grad
        grad_in = _local_gather(local_grad_in, pos, inp_batch_size)
        return grad_in, None, None, None


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
class EagerMoEScatter(EagerPyLayer):
    r"""
    Scatter input samples from [batch x sequences] to contiguous alone experts.
    If `world_size` is greater than 1, the samples will first be locally
    scattered, and then exchanged across workers.
    """

    @staticmethod
    def forward(ctx,
                inp,
                pos,
                local_expert_count,
                global_expert_count,
                fwd_batch_size,
                world_size,
                group=None):
        local_input_buf = _local_scatter(inp, pos)
        if world_size > 1:
            global_input_buf = global_scatter(
                local_input_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            global_input_buf = local_input_buf

        ctx.moe_args = inp.shape[0], world_size, group

        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return global_input_buf

    @staticmethod
    def backward(ctx, grad):
        (pos, local_expert_count, global_expert_count) = ctx.saved_tensor()
        (inp_batch_size, world_size, group) = ctx.moe_args

        if world_size > 1:
            local_grad_in = global_gather(
                grad, local_expert_count, global_expert_count, group=group)
        else:
            local_grad_in = grad
        grad_in = _local_gather(local_grad_in, pos, inp_batch_size)
        return grad_in, None, None, None


R
Roc 已提交
181
class MoEGather(PyLayer):
R
Roc 已提交
182 183
    r"""
    Gather output samples from contiguous alone experts back to [batch x
R
Roc 已提交
184
    sequences]. Works symmetrically with MoEScatter.
R
Roc 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    """

    @staticmethod
    def forward(ctx,
                global_output_buf,
                pos,
                local_expert_count,
                global_expert_count,
                local_batch_size,
                world_size,
                group=None):
        if world_size > 1:
            local_output_buf = global_gather(
                global_output_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            local_output_buf = global_output_buf
        output = _local_gather(
            local_output_buf, pos, local_batch_size, maybe_overlap=False)

        ctx.moe_args = (global_output_buf.shape[0], world_size, group)
        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return output

    @staticmethod
    def backward(ctx, grad_out):
        pos, local_expert_count, global_expert_count = ctx.saved_tensor()
        fwd_batch_size, world_size, group = ctx.moe_args
        grad_out_buf = _local_scatter(grad_out, pos)
        if world_size > 1:
            global_grad_out_buf = global_scatter(
                grad_out_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            global_grad_out_buf = grad_out_buf
        return global_grad_out_buf, None, None, None


228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
class EagerMoEGather(EagerPyLayer):
    r"""
    Gather output samples from contiguous alone experts back to [batch x
    sequences]. Works symmetrically with MoEScatter.
    """

    @staticmethod
    def forward(ctx,
                global_output_buf,
                pos,
                local_expert_count,
                global_expert_count,
                local_batch_size,
                world_size,
                group=None):
        if world_size > 1:
            local_output_buf = global_gather(
                global_output_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            local_output_buf = global_output_buf
        output = _local_gather(
            local_output_buf, pos, local_batch_size, maybe_overlap=False)

        ctx.moe_args = (global_output_buf.shape[0], world_size, group)
        variables = (pos, local_expert_count, global_expert_count)
        ctx.save_for_backward(*variables)
        return output

    @staticmethod
    def backward(ctx, grad_out):
        pos, local_expert_count, global_expert_count = ctx.saved_tensor()
        fwd_batch_size, world_size, group = ctx.moe_args
        grad_out_buf = _local_scatter(grad_out, pos)
        if world_size > 1:
            global_grad_out_buf = global_scatter(
                grad_out_buf,
                local_expert_count,
                global_expert_count,
                group=group)
        else:
            global_grad_out_buf = grad_out_buf
        return global_grad_out_buf, None, None, None


R
Roc 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
class AllGather(PyLayer):
    r"""
    A wrapper for the All-Gather function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        tensor_list = []
        paddle.distributed.all_gather(tensor_list, inp, group=group)
        output = paddle.concat(tensor_list, axis=0)
        ctx.args = rank, inp.shape[0]
        return output

    @staticmethod
    def backward(ctx, grad_out):
        rank, dim0 = ctx.args
        return paddle.slice(
            grad_out, axes=[0], starts=[rank * dim0], ends=[(rank + 1) * dim0])


295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
class EagerAllGather(EagerPyLayer):
    r"""
    A wrapper for the All-Gather function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        tensor_list = []
        paddle.distributed.all_gather(tensor_list, inp, group=group)
        output = paddle.concat(tensor_list, axis=0)
        ctx.args = rank, inp.shape[0]
        return output

    @staticmethod
    def backward(ctx, grad_out):
        rank, dim0 = ctx.args
        return paddle.slice(
            grad_out, axes=[0], starts=[rank * dim0], ends=[(rank + 1) * dim0])


R
Roc 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
class Slice(PyLayer):
    r"""
    A wrapper for the Slice function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        B = inp.shape[0]
        local_batch_size = B // world_size
        batch_start = local_batch_size * rank
        batch_end = min(batch_start + local_batch_size, B)
        inp = paddle.slice(
            inp, axes=[0], starts=[batch_start], ends=[batch_end])
        ctx.args = world_size, group
        return inp

    @staticmethod
    def backward(ctx, grad_out):
        world_size, group = ctx.args
        return _all_gather(grad_out, group=group)
335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356


class EagerSlice(EagerPyLayer):
    r"""
    A wrapper for the Slice function to support auto-differentiation.
    """

    @staticmethod
    def forward(ctx, inp, rank, world_size, group):
        B = inp.shape[0]
        local_batch_size = B // world_size
        batch_start = local_batch_size * rank
        batch_end = min(batch_start + local_batch_size, B)
        inp = paddle.slice(
            inp, axes=[0], starts=[batch_start], ends=[batch_end])
        ctx.args = world_size, group
        return inp

    @staticmethod
    def backward(ctx, grad_out):
        world_size, group = ctx.args
        return _all_gather(grad_out, group=group)
R
Roc 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373


def prepare_forward(gate, num_expert, world_size, moe_group):
    pos, local_expert_count, global_expert_count = count_by_gate(
        gate, num_expert, world_size, group=moe_group)
    with paddle.no_grad():
        fwd_expert_count = global_expert_count.reshape_(
            [world_size, num_expert]).sum(axis=0)
        fwd_batch_size = int(fwd_expert_count.sum().item())
    return (
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
        fwd_batch_size, )


R
Roc 已提交
374 375
class MoELayer(nn.Layer):
    """MoE Layer
R
Roc 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
    Args:
        d_model: (int) model dimention
        experts: (nn.LayerList) expert networks list
        gate: (dict|NaiveGate|SwitchGate|NaiveGate): 
                if gate is a dict:
                    gate is a gate network config, containing 2 keys: 
                    `type`(str) value can be: "naive", "gshard", "switch" or None, default is "gshard"
                    `top_k`(int) default value is 2
                else gate is an instance of NaiveGate|SwitchGate|NaiveGate:

        moe_group: moe group for experts communication
        mp_group: mp group for mp commutication
        kwargs: other parameters
    Examples:
        .. code-block:: python
        from paddle.nn import layer, LayerList
R
Roc 已提交
392
        from paddle.distributed.moe import MoElayer
R
Roc 已提交
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
        from paddle.distributed.collective import Group
        from paddle.distributed import fleet

        moe_group = Group(fleet.worker_index(),
                          fleet.worker_num(),
                          0,
                          list(range(fleet.worker_num())))
        mp_group = None

        num_experts=8
        dim_feedforward=512
        d_model=8
        top_k=2

        class ExpertLayer(Layer):
            def __init__(self, d_model, d_hidden, name=None,rank=0, windex = 0, num_expert=1):
                super(ExpertLayer, self).__init__()                
                self.htoh4 = nn.Linear(d_model, d_hidden)
                self.h4toh = nn.Linear(d_hidden, d_model)

            def forward(self, x):
                x = self.htoh4(x)
                x = self.h4toh(x)
                return x

        gate_config = {
                "type": "gshard",
                "top_k": top_k,
        }
        
        experts_list = LayerList()
        for expi in range(num_experts):
            exp_layer = ExpertLayer(d_model, dim_feedforward // top_k, windex=expi, num_expert=num_experts)
            experts_list.append(exp_layer)
        
R
Roc 已提交
428
        moeLayer = MoELayer(d_model = d_model,
R
Roc 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
                            experts=experts_list,
                            gate=gate_config,
                            moe_group=moe_group,
                            mp_group=mp_group,
                            recompute_interval=0)
        
    """

    def __init__(self,
                 d_model,
                 experts,
                 gate=None,
                 moe_group=None,
                 mp_group=None,
                 **kwargs):
R
Roc 已提交
444
        super(MoELayer, self).__init__()
R
Roc 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512

        recompute_interval = kwargs.get("recompute_interval", 0)

        if gate is None:
            gate = dict()

        assert isinstance(gate, (dict, BaseGate)), \
             "gate config' type must be dict or an instance of BaseGate"
        # only support mp/dp
        self.group = moe_group

        self.world_size = 1
        if self.group is not None:
            self.world_size = self.group.nranks
        self.num_expert = len(experts)
        self.recompute_interval = recompute_interval
        assert experts is not None
        self.experts = experts

        self.mp_group = mp_group
        self.d_model = d_model
        if isinstance(gate, dict):
            self.top_k = gate.get("top_k", 2)
            gate = gate.get("type", "gshard")
            if gate == "naive" or gate is None:
                gate = NaiveGate(
                    self.d_model,
                    num_expert=len(experts),
                    world_size=self.world_size,
                    topk=self.top_k)
            elif gate == "gshard":
                gate = GShardGate(
                    self.d_model,
                    num_expert=len(experts),
                    world_size=self.world_size,
                    topk=self.top_k,
                    group=self.group)
            elif gate == "switch":
                gate = SwitchGate(
                    self.d_model,
                    num_expert=len(experts),
                    world_size=self.world_size,
                    topk=self.top_k,
                    group=self.group)
            else:
                assert False, "We only support naive gate, \
                                gshard gate and switch gate, \
                                but you choose {} gate.".format(str(gate))
        elif isinstance(gate, NaiveGate):
            self.top_k = gate.top_k
        elif isinstance(gate, BaseGate):
            raise TypeError("Unimplemented gate type: ", type(gate))
        else:
            raise TypeError("gate's type must be either dict or moe.BaseGate")
        self.gate = gate

    def forward(self, inp):
        # inp shape: b * s * m
        assert len(inp.shape) == 3
        origin_shape = inp.shape
        inp = inp.reshape_([-1, origin_shape[2]])

        mp_rank = 0
        mp_size = 1
        if self.mp_group is not None:
            mp_rank = self.mp_group.rank
            mp_size = self.mp_group.nranks
        if mp_size > 1:
513 514 515 516
            if in_dygraph_mode():
                inp = EagerSlice.apply(inp, mp_rank, mp_size, self.mp_group)
            else:
                inp = Slice.apply(inp, mp_rank, mp_size, self.mp_group)
R
Roc 已提交
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        value, gate = self.gate(inp)

        (
            pos,
            local_expert_count,
            global_expert_count,
            fwd_expert_count,
            fwd_batch_size, ) = prepare_forward(gate, self.num_expert,
                                                self.world_size, self.group)

        topk = 1
        if len(gate.shape) == 2:
            topk = gate.shape[1]

        if pos.shape != [0]:
            temp_pos = pos // topk
        else:
            temp_pos = pos
        assert topk == self.top_k

537 538 539 540 541 542 543 544
        if in_dygraph_mode():
            x = EagerMoEScatter.apply(inp, temp_pos, local_expert_count,
                                      global_expert_count, fwd_batch_size,
                                      self.world_size, self.group)
        else:
            x = MoEScatter.apply(inp, temp_pos, local_expert_count,
                                 global_expert_count, fwd_batch_size,
                                 self.world_size, self.group)
R
Roc 已提交
545 546 547 548 549 550

        d_model = self.d_model

        def experts_fwd(x, fwd_expert_count, experts):

            if x.shape[0] == 0:
R
Roc 已提交
551
                return x
R
Roc 已提交
552 553 554 555 556 557 558 559 560 561 562
            y = []
            last_index = 0
            assert isinstance(fwd_expert_count, np.ndarray)
            assert len(experts) == len(fwd_expert_count)
            for idx, expert_count in enumerate(fwd_expert_count):
                if expert_count <= 0:
                    continue
                y.append(experts[idx](x[last_index:expert_count + last_index]))
                last_index = expert_count + last_index
            return paddle.concat(y, axis=0)

R
Roc 已提交
563
        if self.recompute_interval <= 0 or x.shape[0] == 0:
R
Roc 已提交
564 565 566 567 568 569 570 571 572
            x = experts_fwd(x, fwd_expert_count.numpy(), self.experts)
        else:
            x = _hp_recompute(experts_fwd, x,
                              fwd_expert_count.numpy(), self.experts)

        out_batch_size = inp.shape[0]
        if len(gate.shape) == 2:
            out_batch_size *= gate.shape[1]

573 574 575 576 577 578 579
        if in_dygraph_mode():
            x = EagerMoEGather.apply(x, pos, local_expert_count,
                                     global_expert_count, out_batch_size,
                                     self.world_size, self.group)
        else:
            x = MoEGather.apply(x, pos, local_expert_count, global_expert_count,
                                out_batch_size, self.world_size, self.group)
R
Roc 已提交
580 581 582 583 584 585

        x = x.reshape([-1, self.top_k, d_model])
        value = value.reshape([x.shape[0], 1, self.top_k])
        x = paddle.bmm(value, x).reshape([-1, d_model])

        if mp_size > 1:
586 587 588 589
            if in_dygraph_mode():
                x = EagerAllGather.apply(x, mp_rank, mp_size, self.mp_group)
            else:
                x = AllGather.apply(x, mp_rank, mp_size, self.mp_group)
R
Roc 已提交
590 591 592 593

        x = paddle.reshape_(x, origin_shape)

        return x