test_while_op.py 6.6 KB
Newer Older
C
chengduoZH 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yang Yang(Tony) 已提交
17
import unittest
L
Leo Chen 已提交
18
import paddle
19 20 21
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
import paddle.fluid.core as core
22
import paddle.fluid as fluid
23
from paddle.fluid.backward import append_backward
Y
Yang Yang(Tony) 已提交
24
import numpy
25
from paddle.fluid import compiler, Program, program_guard
Y
Yang Yang(Tony) 已提交
26

27 28
paddle.enable_static()

Y
Yang Yang(Tony) 已提交
29 30

class TestWhileOp(unittest.TestCase):
31
    def simple_net(self):
Y
Yang Yang(Tony) 已提交
32
        d0 = layers.data(
F
fengjiayi 已提交
33
            "d0", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
34
        d1 = layers.data(
F
fengjiayi 已提交
35
            "d1", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
36
        d2 = layers.data(
F
fengjiayi 已提交
37
            "d2", shape=[10], append_batch_size=False, dtype='float32')
Y
Yang Yang(Tony) 已提交
38 39 40
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
        init = layers.zeros(shape=[10], dtype='float32')
Y
Yang Yang(Tony) 已提交
41
        mem_array = layers.array_write(x=init, i=i)
Y
Yang Yang(Tony) 已提交
42 43 44 45 46 47 48
        data_array = layers.array_write(x=d0, i=i)
        i = layers.increment(i)
        layers.array_write(d1, i, array=data_array)
        i = layers.increment(i)
        layers.array_write(d2, i, array=data_array)
        i = layers.zeros(shape=[1], dtype='int64')
        i.stop_gradient = True
C
chengduoZH 已提交
49
        array_len = layers.fill_constant(shape=[1], dtype='int64', value=1)
Y
Yang Yang(Tony) 已提交
50
        array_len.stop_gradient = True
Y
Yang Yang(Tony) 已提交
51
        cond = layers.less_than(x=i, y=array_len)
C
chengduoZH 已提交
52 53 54 55 56
        j = layers.fill_constant(shape=[1], dtype='int64', value=1)
        j.stop_gradient = True
        array_len2 = layers.fill_constant(shape=[1], dtype='int64', value=3)
        array_len2.stop_gradient = True
        cond2 = layers.less_than(x=j, y=array_len2)
Y
Yang Yang(Tony) 已提交
57
        while_op = layers.While(cond=cond)
C
chengduoZH 已提交
58
        while_op2 = layers.While(cond=cond2)
Y
Yang Yang(Tony) 已提交
59 60 61 62
        with while_op.block():
            d = layers.array_read(array=data_array, i=i)
            prev = layers.array_read(array=mem_array, i=i)
            result = layers.sums(input=[d, prev])
Y
Yang Yang(Tony) 已提交
63 64

            i = layers.increment(x=i, in_place=True)
Y
Yang Yang(Tony) 已提交
65 66
            layers.array_write(result, i=i, array=mem_array)
            layers.less_than(x=i, y=array_len, cond=cond)
Y
Yang Yang(Tony) 已提交
67

C
chengduoZH 已提交
68 69 70 71 72 73 74 75 76
            with while_op2.block():
                d2 = layers.array_read(array=data_array, i=j)
                prev2 = layers.array_read(array=mem_array, i=j)
                result2 = layers.sums(input=[d2, prev2])

                j = layers.increment(x=j, in_place=True)
                layers.array_write(result2, i=j, array=mem_array)
                layers.less_than(x=j, y=array_len2, cond=cond2)
        sum_result = layers.array_read(array=mem_array, i=j)
Y
Yu Yang 已提交
77
        loss = layers.mean(sum_result)
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        return loss, sum_result

    def test_simple_net(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            loss, sum_result = self.simple_net()

            append_backward(loss)

            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []

            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))

            outs = exe.run(feed={'d0': d[0],
                                 'd1': d[1],
                                 'd2': d[2]},
                           fetch_list=[sum_result])
            self.assertAlmostEqual(numpy.sum(d), numpy.sum(outs[0]), delta=0.01)
Y
Yang Yang(Tony) 已提交
100

101 102 103 104 105 106
    def test_simple_net_forward(self):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            self.simple_net()
            binary = fluid.compiler.CompiledProgram(main_program)
Y
Yang Yang(Tony) 已提交
107

108 109 110
            cpu = core.CPUPlace()
            exe = Executor(cpu)
            d = []
Y
Yang Yang(Tony) 已提交
111

112 113
            for i in range(3):
                d.append(numpy.random.random(size=[10]).astype('float32'))
Y
Yang Yang(Tony) 已提交
114

115 116
            for _ in range(2):
                exe.run(binary, feed={'d0': d[0], 'd1': d[1], 'd2': d[2]})
Y
Yang Yang(Tony) 已提交
117

118 119 120 121 122 123 124 125 126 127
    def test_exceptions(self):
        i = layers.zeros(shape=[2], dtype='int64')
        array_len = layers.fill_constant(shape=[2], dtype='int64', value=1)
        cond = layers.less_than(x=i, y=array_len)
        with self.assertRaises(TypeError):
            layers.While(cond=cond)
        cond = layers.cast(cond, dtype='float64')
        with self.assertRaises(TypeError):
            layers.While(cond=cond)

Y
Yang Yang(Tony) 已提交
128

129 130 131 132 133 134 135 136 137 138 139
class BadInputTest(unittest.TestCase):
    def test_error(self):
        with fluid.program_guard(fluid.Program()):

            def test_bad_x():
                x = [1, 2, 3]
                fluid.layers.increment(x)

            self.assertRaises(TypeError, test_bad_x)


140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
class TestIgnoreVarNameInWhile(unittest.TestCase):
    def test_ignore_var(self):
        def cond(i, ten, temp, y):
            return i < ten

        def body_func(i, ten, batch_info, origin_seq):
            print(batch_info)
            batch_info = fluid.contrib.layers.shuffle_batch(batch_info)
            print(batch_info)
            i = i + 1
            return [i, ten, batch_info, origin_seq]

        x = fluid.layers.data(name='x', shape=[-1, 1, 4])
        y = fluid.layers.data(name='y', shape=[-1, 1, 1])
        temp = layers.concat(input=[x, y], axis=-1)
        i = layers.fill_constant(shape=[1], value=0, dtype='int32')
        num = layers.fill_constant(shape=[1], value=5, dtype='int32')

        i, ten, shuffle_temp, y = layers.while_loop(cond, body_func,
                                                    [i, num, temp, y])

        output = shuffle_temp

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        input_x = numpy.array([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10]])
        input_x = input_x.reshape(3, 1, 4)
        input_y = numpy.array([[10], [12], [33]])
        input_y = input_y.reshape(3, 1, 1)

        res, = exe.run(fluid.default_main_program(),
                       feed={'x': input_x,
                             'y': input_y},
                       fetch_list=[output])

        self.assertListEqual(list(res.shape), [3, 1, 5])


Y
Yang Yang(Tony) 已提交
179 180
if __name__ == '__main__':
    unittest.main()