test_unbind_op.py 6.6 KB
Newer Older
myq406450149's avatar
myq406450149 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle
myq406450149's avatar
myq406450149 已提交
21
import paddle.fluid as fluid
myq406450149's avatar
myq406450149 已提交
22
import paddle.tensor as tensor
myq406450149's avatar
myq406450149 已提交
23
from paddle.fluid import compiler, Program, program_guard, core
24
from paddle.fluid.framework import _test_eager_guard
myq406450149's avatar
myq406450149 已提交
25 26


myq406450149's avatar
myq406450149 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
class TestUnbind(unittest.TestCase):
    def test_unbind(self):

        x_1 = fluid.data(shape=[2, 3], dtype='float32', name='x_1')
        [out_0, out_1] = tensor.unbind(input=x_1, axis=0)
        input_1 = np.random.random([2, 3]).astype("float32")
        axis = fluid.data(shape=[1], dtype='int32', name='axis')
        exe = fluid.Executor(place=fluid.CPUPlace())

        [res_1, res_2] = exe.run(fluid.default_main_program(),
                                 feed={"x_1": input_1,
                                       "axis": 0},
                                 fetch_list=[out_0, out_1])

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    def test_unbind_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.random.random([2, 3]).astype("float32")
            x = paddle.to_tensor(np_x)
            x.stop_gradient = False
            [res_1, res_2] = paddle.unbind(x, 0)
            self.assertTrue(np.array_equal(res_1, np_x[0, 0:100]))
            self.assertTrue(np.array_equal(res_2, np_x[1, 0:100]))

            out = paddle.add_n([res_1, res_2])

            np_grad = np.ones(x.shape, np.float32)
            out.backward()
            self.assertTrue(np.array_equal(x.grad.numpy(), np_grad))

    def test_unbind_dygraph_final_state(self):
        with _test_eager_guard():
            self.test_unbind_dygraph()

myq406450149's avatar
myq406450149 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

class TestLayersUnbind(unittest.TestCase):
    def test_layers_unbind(self):

        x_1 = fluid.data(shape=[2, 3], dtype='float32', name='x_1')
        [out_0, out_1] = fluid.layers.unbind(input=x_1, axis=0)
        input_1 = np.random.random([2, 3]).astype("float32")
        axis = fluid.data(shape=[1], dtype='int32', name='axis')
        exe = fluid.Executor(place=fluid.CPUPlace())

        [res_1, res_2] = exe.run(fluid.default_main_program(),
                                 feed={"x_1": input_1,
                                       "axis": 0},
                                 fetch_list=[out_0, out_1])

        assert np.array_equal(res_1, input_1[0, 0:100])
        assert np.array_equal(res_2, input_1[1, 0:100])


myq406450149's avatar
myq406450149 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class TestUnbindOp(OpTest):
    def initParameters(self):
        pass

    def outReshape(self):
        pass

    def setAxis(self):
        pass

    def setUp(self):
        self._set_op_type()
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        self.initParameters()
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.outReshape()
        self.inputs = {'X': x}
        self.attrs = {'axis': self.axis}
        self.setAxis()
        self.outputs = {'Out': [('out%d' % i, self.out[i]) \
            for i in range(len(self.out))]}

    def get_dtype(self):
        return "float64"

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1', 'out2'])


class TestUnbindOp1(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp2(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp3(TestUnbindOp):
    def initParameters(self):
        self.axis = 2
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -1}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


class TestUnbindOp4(TestUnbindOp):
    def initParameters(self):
        self.axis = 1
        self.num = 2

    def setAxis(self):
        self.attrs = {'axis': -2}

    def test_check_grad(self):
        self.check_grad(['X'], ['out0', 'out1'])

    def outReshape(self):
        self.out[0] = self.out[0].reshape((3, 2))
        self.out[1] = self.out[1].reshape((3, 2))


178 179 180
class TestUnbindBF16Op(OpTest):
    def setUp(self):
        self._set_op_type()
181
        self.python_api = paddle.unbind
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        self.dtype = self.get_dtype()
        self.axis = 0
        self.num = 3
        x = np.arange(12).reshape(3, 2, 2).astype(self.dtype)
        self.out = np.split(x, self.num, self.axis)
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.attrs = {'axis': self.axis}
        self.outputs = {'Out': [('out%d' % i, convert_float_to_uint16(self.out[i])) \
            for i in range(len(self.out))]}

    def get_dtype(self):
        return np.uint16

    def _set_op_type(self):
        self.op_type = "unbind"

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        pass


myq406450149's avatar
myq406450149 已提交
205 206 207 208 209 210 211 212 213 214 215
class TestUnbindAxisError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):
            x = fluid.data(shape=[2, 3], dtype='float32', name='x')

            def test_table_Variable():
                tensor.unbind(input=x, axis=2.0)

            self.assertRaises(TypeError, test_table_Variable)


myq406450149's avatar
myq406450149 已提交
216 217
if __name__ == '__main__':
    unittest.main()