test_sparse_attention_op.py 18.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle.fluid.core as core
19
from paddle.static import Program, program_guard
20
import paddle
21 22 23
import paddle.fluid as fluid
import paddle.fluid.framework as framework
import paddle.nn.functional as F
24 25
import os
import re
26
import copy
27 28 29 30 31 32 33 34 35 36 37 38 39 40


def get_cuda_version():
    result = os.popen("nvcc --version").read()
    regex = r'release (\S+),'
    match = re.search(regex, result)
    if match:
        num = str(match.group(1))
        integer, decimal = num.split('.')
        return int(integer) * 1000 + int(float(decimal) * 10)
    else:
        return -1


41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def masked_fill(x):
    row, col = x.shape[0], x.shape[1]
    for i in range(row):
        for j in range(col):
            if x[i][j] == 0:
                x[i][j] = float('-inf')
    return x


def init_mask(x):
    row, col = x.shape[0], x.shape[1]
    for i in range(row):
        for j in range(col):
            if x[i][j] == 0 and (j < 0.8 * col):
                x[i][j] = 1
    return x


def softmax(x, kp_mask=None, attn_mask=None, bsz=None):
    if kp_mask is None and attn_mask is None:
        max = np.max(x, axis=1, keepdims=True)
        e_x = np.exp(x - max)
        sum = np.sum(e_x, axis=1, keepdims=True)
        f_x = e_x / sum
        return f_x
    else:
        # kp_mask
        current_kp_mask = kp_mask[bsz]
        row = current_kp_mask.shape[0]
        current_kp_mask = np.expand_dims(current_kp_mask, 0).repeat(row, axis=0)
        # attn_mask
        current_attn_mask = copy.deepcopy(attn_mask)
        current_attn_mask = masked_fill(current_attn_mask)
        current_kp_mask = masked_fill(current_kp_mask)
        x = x + current_kp_mask
        x = x + current_attn_mask
        max = np.max(x, axis=1, keepdims=True)
        e_x = np.exp(x - max)
        sum = np.sum(e_x, axis=1, keepdims=True)
        f_x = e_x / sum
        return f_x
82 83 84 85 86 87 88 89 90 91 92 93 94 95


def get_csr_value(mat, layout, nnz):
    row, col = mat.shape[0], mat.shape[1]
    value = np.zeros(nnz)
    ptr = 0
    for i in range(row):
        for j in range(col):
            if layout[i][j] == 1:
                value[ptr] = mat[i][j]
                ptr += 1
    return value


96 97 98 99 100 101 102 103
def ref_sparse_attention(q,
                         k,
                         v,
                         offset,
                         columns,
                         kp_mask=None,
                         attn_mask=None,
                         bsz=None):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    row, col, nnz = q.shape[0], q.shape[1], columns.shape[0]
    mat = np.zeros((row, row))
    for cur_row in range(row):
        start_ptr = int(offset[cur_row])
        end_ptr = int(offset[cur_row + 1])
        for ptr in range(start_ptr, end_ptr):
            cur_col = int(columns[ptr])
            mat[cur_row][cur_col] = 1
    a = np.dot(q, k.T) * mat
    a_value = get_csr_value(a, mat, nnz)
    scaling = float(col)**-0.5
    a = scaling * a
    for i in range(row):
        for j in range(row):
            if mat[i][j] == 0:
                a[i][j] = float('-inf')
120 121 122 123 124
    # softmax
    if kp_mask is None and attn_mask is None:
        b = softmax(a)
    else:
        b = softmax(a, kp_mask=kp_mask, attn_mask=attn_mask, bsz=bsz)
125 126 127 128 129
    b_value = get_csr_value(b, mat, nnz)
    result = np.dot(b, v)
    return result, a_value, b_value


130 131 132 133 134 135 136
def ref_batch_sparse_attention(q,
                               k,
                               v,
                               offset,
                               columns,
                               kp_mask=None,
                               attn_mask=None):
137 138 139 140 141 142 143 144 145
    batch_size, num_heads, row, col = q.shape
    nnz = columns.shape[2]
    result = np.zeros((batch_size, num_heads, row, col))
    result_sdd = np.zeros((batch_size, num_heads, nnz))
    result_softmax = np.zeros((batch_size, num_heads, nnz))
    for i in range(batch_size):
        for j in range(num_heads):
            cur_q, cur_k, cur_v, = q[i][j], k[i][j], v[i][j]
            cur_offset, cur_columns = offset[i][j], columns[i][j]
146 147 148 149 150 151 152 153 154 155 156 157 158
            if kp_mask is None and attn_mask is None:
                cur_result, cur_sdd, cur_softmax = ref_sparse_attention(
                    cur_q, cur_k, cur_v, cur_offset, cur_columns)
            else:
                cur_result, cur_sdd, cur_softmax = ref_sparse_attention(
                    cur_q,
                    cur_k,
                    cur_v,
                    cur_offset,
                    cur_columns,
                    kp_mask=kp_mask,
                    attn_mask=attn_mask,
                    bsz=i)
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
            result[i][j] = cur_result
            result_sdd[i][j], result_softmax[i][j] = cur_sdd, cur_softmax
    return result, result_sdd, result_softmax


def init_csr_format(batch_size, num_heads, rows, blocksize):
    block_num, block_last = rows / blocksize, rows % blocksize
    nnz_num = block_num * blocksize * blocksize + block_last * block_last
    offset = np.zeros(rows + 1)
    columns = np.zeros(int(nnz_num))
    mat = np.zeros((rows, rows))
    for i in range(0, rows, blocksize):
        for x in range(blocksize):
            for y in range(blocksize):
                p_x, p_y = i + x, i + y
                if (p_x < rows) and (p_y < rows):
                    mat[p_x][p_y] = 1
    p_offset, p_column, count = 0, 0, 0
    for i in range(rows):
        for j in range(rows):
            if mat[i][j] != 0:
                count += 1
                columns[p_column] = j
                p_column += 1
        p_offset += 1
        offset[p_offset] = count
    offset = np.expand_dims(np.expand_dims(offset, 0), 0)
    offset = offset.repeat(num_heads, axis=1)
    offset = offset.repeat(batch_size, axis=0)
    columns = np.expand_dims(np.expand_dims(columns, 0), 0)
    columns = columns.repeat(num_heads, axis=1)
    columns = columns.repeat(batch_size, axis=0)
    return offset, columns


@unittest.skipIf(
195 196
    not core.is_compiled_with_cuda() or get_cuda_version() < 11030,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3"
197
)
198 199
class TestSparseAttentionOp(OpTest):
    def config(self):
200 201
        self.shape = (1, 1, 16, 16)
        self.blocksize = 4
202
        self.dtype = "float64"
203
        self.use_mask = True
204 205 206 207 208 209 210 211 212

    def setUp(self):
        paddle.enable_static()
        self.config()
        self.op_type = "sparse_attention"
        self.place = paddle.CUDAPlace(0)
        self.q = np.random.random(self.shape).astype(self.dtype)
        self.k = np.random.random(self.shape).astype(self.dtype)
        self.v = np.random.random(self.shape).astype(self.dtype)
213
        # init CSR tensor
214 215 216 217
        offset, columns = init_csr_format(self.shape[0], self.shape[1],
                                          self.shape[2], self.blocksize)
        self.offset = offset.astype('int32')
        self.columns = columns.astype('int32')
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        # init mask tensor
        key_padding_mask_shape = (self.shape[0], self.shape[2])
        attn_mask_shape = (self.shape[2], self.shape[2])
        key_padding_mask = np.random.randint(0, 2, size=key_padding_mask_shape)
        attn_mask = np.random.randint(0, 2, size=attn_mask_shape)
        key_padding_mask = init_mask(key_padding_mask)
        attn_mask = init_mask(attn_mask)

        self.key_padding_mask = key_padding_mask.astype(self.dtype)
        self.attn_mask = attn_mask.astype(self.dtype)
        if self.use_mask == True:
            result, result_sdd, result_softmax = ref_batch_sparse_attention(
                self.q,
                self.k,
                self.v,
                self.offset,
                self.columns,
                kp_mask=self.key_padding_mask,
                attn_mask=self.attn_mask)
        else:
            result, result_sdd, result_softmax = ref_batch_sparse_attention(
                self.q, self.k, self.v, self.offset, self.columns)

        if self.use_mask == True:
            self.inputs = {
                'Q': self.q,
                'K': self.k,
                'V': self.v,
                'Offset': self.offset,
                'Columns': self.columns,
                'KeyPaddingMask': self.key_padding_mask,
                'AttnMask': self.attn_mask,
            }
        else:
            self.inputs = {
                'Q': self.q,
                'K': self.k,
                'V': self.v,
                'Offset': self.offset,
                'Columns': self.columns,
            }
259 260
        self.outputs = {
            'Out': result.astype(self.dtype),
261 262
            'SparseDotSdd': result_sdd.astype(self.dtype),
            'Softmax': result_softmax.astype(self.dtype)
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
        }

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(self.place, ['Q'], 'Out')
        self.check_grad_with_place(self.place, ['K'], 'Out')
        self.check_grad_with_place(self.place, ['V'], 'Out')


class TestSparseAttentionOpFp32Test(TestSparseAttentionOp):
    def config(self):
        self.shape = (1, 1, 8, 16)
        self.blocksize = 2
        self.dtype = "float32"
279
        self.use_mask = False
280 281 282 283 284 285 286


class TestSparseAttentionOpShapeTest(TestSparseAttentionOp):
    def config(self):
        self.shape = (2, 2, 32, 8)
        self.blocksize = 8
        self.dtype = "float64"
287
        self.use_mask = False
288 289


290
@unittest.skipIf(
291 292
    not core.is_compiled_with_cuda() or get_cuda_version() < 11030,
    "core is not compiled with CUDA and cuda version need larger than or equal to 11.3"
293 294 295 296 297 298 299
)
class TestSparseAttentionAPI(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (1, 1, 8, 4)
        self.blocksize = 2
        self.dtype = 'float64'
300
        self.use_mask = True
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

    def test_static_graph(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            Q = paddle.static.data(name="Q", shape=self.shape, dtype=self.dtype)
            K = paddle.static.data(name="K", shape=self.shape, dtype=self.dtype)
            V = paddle.static.data(name="V", shape=self.shape, dtype=self.dtype)

            batch_size, num_heads, rows = self.shape[0], self.shape[
                1], self.shape[2]
            block_num = rows / self.blocksize
            block_last = rows % self.blocksize
            sparse_nnz_num = block_num * self.blocksize * self.blocksize + block_last * block_last
            offset_shape = (batch_size, num_heads, rows + 1)
            columns_shape = (batch_size, num_heads, int(sparse_nnz_num))

            offset = paddle.static.data(
                name="Offset", shape=offset_shape, dtype="int32")
            columns = paddle.static.data(
                name="Columns", shape=columns_shape, dtype="int32")
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
            key_padding_mask_shape = (self.shape[0], self.shape[2])
            attn_mask_shape = (self.shape[2], self.shape[2])
            if self.use_mask == True:
                key_padding_mask = paddle.static.data(
                    name="KeyPaddingMask",
                    shape=key_padding_mask_shape,
                    dtype=self.dtype)
                attn_mask = paddle.static.data(
                    name="AttnMask", shape=attn_mask_shape, dtype=self.dtype)
                Out = F.sparse_attention(
                    Q,
                    K,
                    V,
                    offset,
                    columns,
                    key_padding_mask=key_padding_mask,
                    attn_mask=attn_mask)
            else:
                Out = F.sparse_attention(Q, K, V, offset, columns)
340 341 342 343 344 345 346 347 348

            Q_np = np.random.random(self.shape).astype(self.dtype)
            K_np = np.random.random(self.shape).astype(self.dtype)
            V_np = np.random.random(self.shape).astype(self.dtype)
            offset_np, columns_np = init_csr_format(
                self.shape[0], self.shape[1], self.shape[2], self.blocksize)
            offset_np = offset_np.astype('int32')
            columns_np = columns_np.astype('int32')

349 350 351 352 353 354 355 356 357
            # init mask tensor
            key_padding_mask_np = np.random.randint(
                0, 2, size=key_padding_mask_shape)
            attn_mask_np = np.random.randint(0, 2, size=attn_mask_shape)
            key_padding_mask_np = init_mask(key_padding_mask_np)
            attn_mask_np = init_mask(attn_mask_np)
            key_padding_mask_np = key_padding_mask_np.astype(self.dtype)
            attn_mask_np = attn_mask_np.astype(self.dtype)

358
            exe = fluid.Executor(self.place)
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
            if self.use_mask == True:
                fetches_result = exe.run(feed={
                    "Q": Q_np,
                    "K": K_np,
                    "V": V_np,
                    "Offset": offset_np,
                    "Columns": columns_np,
                    'KeyPaddingMask': key_padding_mask_np,
                    'AttnMask': attn_mask_np
                },
                                         fetch_list=[Out])
                expected_result, __, __ = ref_batch_sparse_attention(
                    Q_np,
                    K_np,
                    V_np,
                    offset_np,
                    columns_np,
                    kp_mask=key_padding_mask_np,
                    attn_mask=attn_mask_np)
            else:
                fetches_result = exe.run(feed={
                    "Q": Q_np,
                    "K": K_np,
                    "V": V_np,
                    "Offset": offset_np,
                    "Columns": columns_np
                },
                                         fetch_list=[Out])
                expected_result, __, __ = ref_batch_sparse_attention(
                    Q_np, K_np, V_np, offset_np, columns_np)
389 390 391 392 393 394 395 396 397 398 399 400 401 402

            self.assertTrue(
                np.allclose(
                    fetches_result, expected_result, atol=1e-5))

    def test_dygraph(self):
        paddle.disable_static()
        offset, columns = init_csr_format(self.shape[0], self.shape[1],
                                          self.shape[2], self.blocksize)
        offset = offset.astype('int32')
        columns = columns.astype('int32')
        query = np.random.random(self.shape).astype(self.dtype)
        key = np.random.random(self.shape).astype(self.dtype)
        value = np.random.random(self.shape).astype(self.dtype)
403 404 405 406 407 408 409 410 411
        # init mask tensor
        key_padding_mask_shape = (self.shape[0], self.shape[2])
        attn_mask_shape = (self.shape[2], self.shape[2])
        key_padding_mask = np.random.randint(0, 2, size=key_padding_mask_shape)
        attn_mask = np.random.randint(0, 2, size=attn_mask_shape)
        key_padding_mask = init_mask(key_padding_mask)
        attn_mask = init_mask(attn_mask)
        key_padding_mask = key_padding_mask.astype(self.dtype)
        attn_mask = attn_mask.astype(self.dtype)
412 413 414 415 416 417

        paddle_query = paddle.to_tensor(query, place=self.place)
        paddle_key = paddle.to_tensor(key, place=self.place)
        paddle_value = paddle.to_tensor(value, place=self.place)
        paddle_offset = paddle.to_tensor(offset, place=self.place)
        paddle_colunmns = paddle.to_tensor(columns, place=self.place)
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        paddle_kp_mask = paddle.to_tensor(key_padding_mask, place=self.place)
        paddle_attn_mask = paddle.to_tensor(attn_mask, place=self.place)

        if self.use_mask == True:
            paddle_result = F.sparse_attention(
                paddle_query,
                paddle_key,
                paddle_value,
                paddle_offset,
                paddle_colunmns,
                key_padding_mask=paddle_kp_mask,
                attn_mask=paddle_attn_mask)

            numpy_result, __, __ = ref_batch_sparse_attention(
                query,
                key,
                value,
                offset,
                columns,
                kp_mask=key_padding_mask,
                attn_mask=attn_mask)
            numpy_result = numpy_result.astype(self.dtype)
        else:
            paddle_result = F.sparse_attention(paddle_query, paddle_key,
                                               paddle_value, paddle_offset,
                                               paddle_colunmns)

            numpy_result, __, __ = ref_batch_sparse_attention(query, key, value,
                                                              offset, columns)
            numpy_result = numpy_result.astype(self.dtype)
448 449 450 451 452 453 454 455 456 457 458 459

        self.assertTrue(
            np.allclose(
                paddle_result.numpy(), numpy_result, atol=1e-5))


class TestSparseAttentionAPITestFloat(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 2, 8, 4)
        self.blocksize = 2
        self.dtype = 'float32'
460
        self.use_mask = False
461 462 463 464 465 466 467 468


class TestSparseAttentionAPITestShape1(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 2, 64, 32)
        self.blocksize = 2
        self.dtype = 'float64'
469
        self.use_mask = False
470 471 472 473 474 475 476 477


class TestSparseAttentionAPITestShape2(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (2, 1, 64, 32)
        self.blocksize = 2
        self.dtype = 'float64'
478
        self.use_mask = False
479 480 481 482 483 484 485 486


class TestSparseAttentionAPITestShape3(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (4, 4, 128, 32)
        self.blocksize = 8
        self.dtype = 'float64'
487
        self.use_mask = False
488 489 490 491 492 493 494 495


class TestSparseAttentionAPITestShape4(TestSparseAttentionAPI):
    def setUp(self):
        self.place = paddle.CUDAPlace(0)
        self.shape = (3, 3, 35, 15)
        self.blocksize = 3
        self.dtype = 'float64'
496
        self.use_mask = False
497 498


499 500
if __name__ == '__main__':
    unittest.main()