test_fused_attention_op.py 13.1 KB
Newer Older
L
Li Min 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.nn as nn
import paddle.fluid.core as core
import paddle.nn.functional as F
21
import paddle.incubate.nn.functional as incubate_f
L
Li Min 已提交
22 23 24 25 26 27 28
from paddle.nn.layer.norm import LayerNorm
from paddle.nn.layer.common import Linear, Dropout
from paddle.nn.layer.transformer import _convert_attention_mask
from paddle import tensor
from paddle.fluid import layers
import unittest
from op_test import OpTest
29 30
from paddle.fluid.framework import default_main_program, _enable_legacy_dygraph
_enable_legacy_dygraph()
31 32

default_main_program().random_seed = 42
L
Li Min 已提交
33 34 35 36 37 38


class TestFusedAttentionOp(OpTest):
    def setUp(self):
        self.config()
        self.generate_input_data()
L
Li Min 已提交
39 40 41 42 43 44 45 46 47 48 49 50

        self.rtol = 1e-5
        # FIXME(limin29): Because there is a problem with the test precision
        #  on A100, atol is temporarily set to 1e-2, and it will be
        #  changed back after the precision problem is solved.
        self.atol = 1e-2
        # make sure local development precision
        if "V100" in paddle.device.cuda.get_device_name():
            self.atol = 1e-4
        if self.x_type is np.float16:
            self.atol = 1e-1

L
Li Min 已提交
51 52
        paddle.set_default_dtype(self.x_type)
        self.__class__.op_type = "fused_attention"
53 54
        # use autograd to check grad in this unittest.
        self.__class__.no_need_check_grad = True
L
Li Min 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
        self.q_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.k_proj = Linear(
            self.kdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.v_proj = Linear(
            self.vdim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        self.out_proj = Linear(
            self.embed_dim,
            self.embed_dim,
            self.weight_attr,
            bias_attr=self.bias_attr)
        paddle.set_default_dtype(np.float32)
        self.norm1 = LayerNorm(self.embed_dim)
        self.norm2 = LayerNorm(self.embed_dim)
        paddle.set_default_dtype(self.x_type)
        self.dropout = Dropout(self.dropout_prob, mode="upscale_in_train")

    def config(self):
        self.x_type = np.float32
        self.attn_mask_type = np.float64
84
        self.pre_layer_norm = False
85
        self.has_attn_mask = True
86
        self.has_cache_kv = False
L
Li Min 已提交
87 88 89 90
        self.training = True

        self.batch_size = 8
        self.query_length = 128
91
        self.cache_length = 128
L
Li Min 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105
        self.head_dim = 64
        self.num_heads = 16
        self.embed_dim = self.head_dim * self.num_heads

        self.dropout_prob = 0.0
        self.attn_dropout_prob = 0.0
        self.weight_attr = None
        self.bias_attr = None
        self.kdim, self.vdim = self.embed_dim, self.embed_dim
        self.key_length, self.value_length = self.query_length, self.query_length

    def generate_input_data(self):
        self.query = np.random.rand(self.batch_size, self.query_length,
                                    self.embed_dim).astype(self.x_type)
106 107 108 109 110 111 112 113 114 115 116
        out_seq_len = self.key_length
        if self.has_cache_kv:
            assert self.training is False, ValueError(
                'cache_kv can only used in inference')
            self.cache_kv = np.random.rand(2, self.batch_size, self.num_heads,
                                           self.cache_length,
                                           self.head_dim).astype(self.x_type)
            out_seq_len += self.cache_length
        else:
            self.cache_kv = None

117
        if self.has_attn_mask:
118
            # [B, n_head, seq_len, out_seq_len]
119 120
            self.attn_mask = np.ones(
                (self.batch_size, self.num_heads, self.query_length,
121
                 out_seq_len),
122 123 124 125 126 127 128 129
                dtype=self.attn_mask_type)
            if self.attn_mask_type == np.int64:
                self.attn_mask = np.tril(self.attn_mask)
            elif self.attn_mask_type == np.float64:
                self.attn_mask = (np.tril(self.attn_mask) - 1.0) * 1e9
            else:
                raise ValueError(
                    "'attn_mask_type' should be 'int64' or 'float64'.")
L
Li Min 已提交
130
        else:
131
            self.attn_mask = None
L
Li Min 已提交
132 133 134 135 136 137 138 139
        self.key, self.value = self.query, self.query

        self.dout = np.random.random((self.batch_size, self.query_length,
                                      self.embed_dim)).astype(self.x_type)

    def GetBaselineOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        tensor_query = paddle.to_tensor(self.query, stop_gradient=False)
140 141 142 143 144

        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)

145 146 147 148
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        residual = tensor_query

        ln1_out = tensor_query
        if self.pre_layer_norm:
            ln1_out = self.norm1(tensor_query)

        q = self.q_proj(ln1_out)
        q = tensor.reshape(x=q, shape=[0, 0, self.num_heads, self.head_dim])
        q_out = tensor.transpose(x=q, perm=[0, 2, 1, 3])
        k = self.k_proj(ln1_out)
        v = self.v_proj(ln1_out)
        k = tensor.reshape(x=k, shape=[0, 0, self.num_heads, self.head_dim])
        k_out = tensor.transpose(x=k, perm=[0, 2, 1, 3])
        v = tensor.reshape(x=v, shape=[0, 0, self.num_heads, self.head_dim])
        v_out = tensor.transpose(x=v, perm=[0, 2, 1, 3])

165 166 167 168 169 170 171 172 173 174 175 176
        if self.has_cache_kv:
            # [1, B, n_head, cache_seq_len, head_dim]
            cache_k, cache_v = paddle.split(cache_kv, 2)
            cache_k = paddle.squeeze(cache_k, axis=0)
            cache_v = paddle.squeeze(cache_v, axis=0)
            # [B, n_head, cache_seq_len + seq_len, head_dim]
            # out_seq_len = cache_seq_len + seq_len
            k_out = paddle.concat([cache_k, k_out], axis=-2)
            v_out = paddle.concat([cache_v, v_out], axis=-2)

        # [B, n_head, seq_len, head_dim] * [B, n_head, out_seq_len, head_dim]
        # --> [B, n_head, seq_len, out_seq_len]
L
Li Min 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        qk_out = layers.matmul(
            x=q_out, y=k_out, transpose_y=True, alpha=self.head_dim**-0.5)

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, qk_out.dtype)
            attn_mask_out = qk_out + attn_mask
            softmax_out = F.softmax(attn_mask_out)
        else:
            softmax_out = F.softmax(qk_out)

        if self.dropout_prob:
            dropout_out = F.dropout(
                softmax_out,
                self.dropout_prob,
                training=self.training,
                mode="upscale_in_train")
193 194
            # [B, n_head, seq_len, out_seq_len] * [B, n_head, out_seq_len, head_dim]
            # --> [B, n_head, seq_len, head_dim]
L
Li Min 已提交
195 196 197 198 199 200 201 202 203 204 205 206
            qktv_out = tensor.matmul(dropout_out, v_out)
        else:
            qktv_out = tensor.matmul(softmax_out, v_out)

        fmha_out = tensor.transpose(qktv_out, perm=[0, 2, 1, 3])
        out_linear_in = tensor.reshape(
            x=fmha_out, shape=[0, 0, fmha_out.shape[2] * fmha_out.shape[3]])
        out = self.out_proj(out_linear_in)

        residual_out = residual + self.dropout(out)
        if not self.pre_layer_norm:
            final_out = self.norm1(residual_out)
L
Li Min 已提交
207 208
        else:
            final_out = residual_out
209 210 211 212

        if self.has_cache_kv:
            return final_out

213 214 215
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, tensor_query.grad
L
Li Min 已提交
216 217 218 219 220 221 222 223 224 225 226

    def GetFusedAttentionOut(self):
        paddle.disable_static(place=paddle.CUDAPlace(0))
        q_proj_weight = paddle.to_tensor(
            self.q_proj.weight, stop_gradient=False)
        k_proj_weight = paddle.to_tensor(
            self.k_proj.weight, stop_gradient=False)
        v_proj_weight = paddle.to_tensor(
            self.v_proj.weight, stop_gradient=False)
        out_linear_weight = paddle.to_tensor(
            self.out_proj.weight, stop_gradient=False)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

        if self.bias_attr is False:
            qkv_bias_tensor = None
            out_linear_bias = None
        else:
            q_proj_bias = paddle.to_tensor(
                self.q_proj.bias, stop_gradient=False)
            k_proj_bias = paddle.to_tensor(
                self.k_proj.bias, stop_gradient=False)
            v_proj_bias = paddle.to_tensor(
                self.v_proj.bias, stop_gradient=False)
            qkv_bias = np.concatenate(
                (q_proj_bias.numpy(), k_proj_bias.numpy(), v_proj_bias.numpy()))
            qkv_bias = qkv_bias.reshape((3, self.num_heads, self.head_dim))
            qkv_bias_tensor = paddle.to_tensor(qkv_bias, stop_gradient=False)
            out_linear_bias = paddle.to_tensor(
                self.out_proj.bias, stop_gradient=False)
L
Li Min 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258

        ln1_scale = paddle.to_tensor(self.norm1.weight, stop_gradient=False)
        ln1_bias = paddle.to_tensor(self.norm1.bias, stop_gradient=False)
        ln2_scale = paddle.to_tensor(self.norm2.weight, stop_gradient=False)
        ln2_bias = paddle.to_tensor(self.norm2.bias, stop_gradient=False)

        q_proj_weight = q_proj_weight.numpy().transpose((1, 0))
        k_proj_weight = k_proj_weight.numpy().transpose((1, 0))
        v_proj_weight = v_proj_weight.numpy().transpose((1, 0))
        qkv_weight = np.concatenate(
            (q_proj_weight, k_proj_weight, v_proj_weight))
        qkv_weight = qkv_weight.reshape(
            (3, self.num_heads, self.head_dim, self.embed_dim))

        x = paddle.to_tensor(self.query, stop_gradient=False)
259 260 261
        cache_kv = None
        if self.has_cache_kv:
            cache_kv = paddle.to_tensor(self.cache_kv, stop_gradient=False)
262 263 264 265
        if self.has_attn_mask:
            attn_mask = paddle.to_tensor(self.attn_mask, stop_gradient=False)
        else:
            attn_mask = None
L
Li Min 已提交
266 267 268 269 270 271
        qkv_weight_tensor = paddle.to_tensor(qkv_weight, stop_gradient=False)
        epsilon = 1e-05
        ln2_epsilon = 1e-05

        if attn_mask is not None:
            attn_mask = _convert_attention_mask(attn_mask, x.dtype)
272
        final_out = incubate_f.fused_multi_head_attention(
L
Li Min 已提交
273 274
            x, qkv_weight_tensor, out_linear_weight, self.pre_layer_norm,
            ln1_scale, ln1_bias, ln2_scale, ln2_bias, epsilon, qkv_bias_tensor,
275
            out_linear_bias, cache_kv, attn_mask, self.dropout_prob,
L
Li Min 已提交
276
            self.attn_dropout_prob, ln2_epsilon)
277 278 279 280

        if self.has_cache_kv:
            return final_out[0], final_out[1]

281 282 283
        paddle.autograd.backward(
            [final_out], [paddle.to_tensor(self.dout)], retain_graph=True)
        return final_out, x.grad
L
Li Min 已提交
284 285

    def test_fused_attention_op(self):
286 287
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
288
        np.testing.assert_allclose(
L
Li Min 已提交
289
            final_out_ref, final_out.numpy(), rtol=self.rtol, atol=self.atol)
290
        np.testing.assert_allclose(
L
Li Min 已提交
291
            x_grad_ref, x_grad.numpy(), rtol=self.rtol, atol=self.atol)
L
Li Min 已提交
292 293


294 295
class TestFusedAttentionOpBiasIsNone(TestFusedAttentionOp):
    def config(self):
296
        super().config()
297 298 299
        self.bias_attr = False


300 301
class TestFusedAttentionOpPreLn(TestFusedAttentionOp):
    def config(self):
302
        super().config()
303
        self.pre_layer_norm = True
304 305 306 307


class TestFusedAttentionOpNoneAttnMask(TestFusedAttentionOp):
    def config(self):
308
        super().config()
309 310
        self.pre_layer_norm = True
        self.has_attn_mask = False
311 312


L
Li Min 已提交
313 314
class TestFusedAttentionOpFp16(TestFusedAttentionOp):
    def config(self):
315
        super().config()
L
Li Min 已提交
316 317 318
        self.x_type = np.float16

    def test_fused_attention_op(self):
319 320
        final_out_ref, x_grad_ref = self.GetBaselineOut()
        final_out, x_grad = self.GetFusedAttentionOut()
L
Li Min 已提交
321
        np.testing.assert_allclose(
L
Li Min 已提交
322
            final_out_ref, final_out.numpy(), rtol=self.rtol, atol=self.atol)
323
        np.testing.assert_allclose(
L
Li Min 已提交
324
            x_grad_ref, x_grad.numpy(), rtol=self.rtol, atol=self.atol)
L
Li Min 已提交
325 326


327 328 329 330 331 332 333 334 335 336 337 338 339
class TestFusedAttentionOpCacheKV(TestFusedAttentionOp):
    def config(self):
        super().config()
        self.has_cache_kv = True
        self.training = False
        self.query_length = 1
        self.key_length, self.value_length = 1, 1

    def test_fused_attention_op(self):
        with paddle.no_grad():
            final_out_ref = self.GetBaselineOut()
            final_out, cache_kv_out = self.GetFusedAttentionOut()
            np.testing.assert_allclose(
L
Li Min 已提交
340 341 342 343
                final_out_ref,
                final_out.numpy(),
                rtol=self.rtol,
                atol=self.atol)
344 345


L
Li Min 已提交
346 347
if __name__ == "__main__":
    unittest.main()