test_fetch_unmerged.py 4.7 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest
import random
import numpy as np
import paddle.fluid as fluid
import six
import paddle

os.environ["CPU_NUM"] = "2"


class TestFetchUnmerged(unittest.TestCase):
    def conv_net(self, img, label):
        conv_pool_1 = fluid.nets.simple_img_conv_pool(
            input=img,
            filter_size=5,
31
            num_filters=8,
Z
Zhen Wang 已提交
32 33 34 35 36 37 38 39
            pool_size=2,
            pool_stride=2,
            pool_type='max',
            act="relu")
        conv_pool_1 = fluid.layers.batch_norm(conv_pool_1)
        conv_pool_2 = fluid.nets.simple_img_conv_pool(
            input=conv_pool_1,
            filter_size=5,
40
            num_filters=16,
Z
Zhen Wang 已提交
41 42 43 44
            pool_size=2,
            pool_stride=2,
            pool_type='avg',
            act="relu")
45
        hidden = fluid.layers.fc(input=conv_pool_2, size=32, act='relu')
Z
Zhen Wang 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
        loss = fluid.layers.cross_entropy(input=prediction, label=label)
        avg_loss = fluid.layers.mean(loss)
        return avg_loss, prediction

    def build_program(self, main, startup, is_test):
        with fluid.unique_name.guard():
            with fluid.program_guard(main, startup):
                img = fluid.layers.data(
                    name='image', shape=[1, 28, 28], dtype='float32')
                label = fluid.layers.data(
                    name='label', shape=[1], dtype='int64')
                loss, prediction = self.conv_net(img, label)
                if not is_test:
                    opt = fluid.optimizer.Adam(learning_rate=0.001)
                    opt.minimize(loss)
        return [img, label], loss, prediction

    def fetch_unmerged(self, use_cuda=True):
        main_program = fluid.Program()
        startup_program = fluid.Program()
        feeds, loss, prediction = self.build_program(main_program,
                                                     startup_program, False)

        place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        build_strategy = fluid.BuildStrategy()
        binary = fluid.CompiledProgram(main_program).with_data_parallel(
            loss_name=loss.name, build_strategy=build_strategy)

78 79
        iters = 2
        batch_size = 16
Z
Zhen Wang 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        train_reader = paddle.batch(
            paddle.reader.shuffle(
                paddle.dataset.mnist.train(), buf_size=500),
            batch_size=batch_size)
        feeder = fluid.DataFeeder(feed_list=feeds, place=place)

        device_num = fluid.core.get_cuda_device_count() if use_cuda else 2
        for _ in range(iters):
            data = next(train_reader())
            loss_v, prediction_v = exe.run(binary,
                                           feed=feeder.feed(data),
                                           fetch_list=[loss, prediction],
                                           return_merged=False)
            self.assertEqual(np.array(loss_v).shape, (device_num, 1))
            self.assertEqual(
                np.array(prediction_v).shape,
                (device_num, batch_size / device_num, 10))

        for _ in range(iters):
            data = next(train_reader())
            loss_v, prediction_v = exe.run(binary,
                                           feed=feeder.feed(data),
                                           fetch_list=[loss, prediction],
                                           return_merged=True)
            self.assertEqual(np.array(loss_v).shape, (device_num, ))
            self.assertEqual(np.array(prediction_v).shape, (batch_size, 10))

    def test_fetch_unmerged(self):
        if fluid.core.is_compiled_with_cuda():
            self.fetch_unmerged(use_cuda=True)
        self.fetch_unmerged(use_cuda=False)

    def test_fetch_unmerged_parallel_graph(self):
        fluid.core.globals()['FLAGS_enable_parallel_graph'] = True
        if fluid.core.is_compiled_with_cuda():
            self.fetch_unmerged(use_cuda=True)
        self.fetch_unmerged(use_cuda=False)
        fluid.core.globals()['FLAGS_enable_parallel_graph'] = False


if __name__ == '__main__':
    unittest.main()