test_adaptive_max_pool3d.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
from __future__ import division

import unittest
import numpy as np

import paddle.fluid.core as core
22
from op_test import OpTest, check_out_dtype
23 24 25
import paddle
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard
26
import paddle.nn.functional as F
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102


def adaptive_start_index(index, input_size, output_size):
    return int(np.floor(index * input_size / output_size))


def adaptive_end_index(index, input_size, output_size):
    return int(np.ceil((index + 1) * input_size / output_size))


def adaptive_pool3d_forward(x,
                            output_size,
                            adaptive=True,
                            data_format='NCDHW',
                            pool_type='max'):

    N = x.shape[0]
    C, D, H, W = [x.shape[1], x.shape[2], x.shape[3], x.shape[4]] \
        if data_format == 'NCDHW' else [x.shape[4], x.shape[1], x.shape[2],x.shape[3]]

    if (isinstance(output_size, int) or output_size == None):
        H_out = output_size
        W_out = output_size
        D_out = output_size
        output_size = [D_out, H_out, W_out]
    else:
        D_out, H_out, W_out = output_size

    if output_size[0] == None:
        output_size[0] = D
        D_out = D
    if output_size[1] == None:
        output_size[1] = H
        H_out = H
    if output_size[2] == None:
        output_size[2] = W
        W_out = W

    out = np.zeros((N, C, D_out, H_out, W_out)) if data_format=='NCDHW' \
        else np.zeros((N, D_out, H_out, W_out, C))
    for k in range(D_out):
        d_start = adaptive_start_index(k, D, output_size[0])
        d_end = adaptive_end_index(k, D, output_size[0])

        for i in range(H_out):
            h_start = adaptive_start_index(i, H, output_size[1])
            h_end = adaptive_end_index(i, H, output_size[1])

            for j in range(W_out):
                w_start = adaptive_start_index(j, W, output_size[2])
                w_end = adaptive_end_index(j, W, output_size[2])

                if data_format == 'NCDHW':
                    x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:
                                 w_end]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (
                            w_end - w_start)
                        out[:, :, k, i, j] = np.sum(x_masked,
                                                    axis=(2, 3, 4)) / field_size
                    elif pool_type == 'max':
                        out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4))

                elif data_format == 'NDHWC':
                    x_masked = x[:, d_start:d_end, h_start:h_end, w_start:
                                 w_end, :]
                    if pool_type == 'avg':
                        field_size = (d_end - d_start) * (h_end - h_start) * (
                            w_end - w_start)
                        out[:, k, i, j, :] = np.sum(x_masked,
                                                    axis=(1, 2, 3)) / field_size
                    elif pool_type == 'max':
                        out[:, k, i, j, :] = np.max(x_masked, axis=(1, 2, 3))
    return out


C
cnn 已提交
103
class TestAdaptiveMaxPool3DAPI(unittest.TestCase):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    def setUp(self):
        self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
        self.res_1_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[3, 3, 3], pool_type="max")

        self.res_2_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=5, pool_type="max")

        self.res_3_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[2, 3, 5], pool_type="max")

        self.res_4_np = adaptive_pool3d_forward(
            x=self.x_np,
            output_size=[3, 3, 3],
            pool_type="max",
            data_format="NDHWC")

        self.res_5_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[None, 3, None], pool_type="max")

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
C
cnn 已提交
129 130
            x = paddle.fluid.data(
                name="x", shape=[2, 3, 5, 7, 7], dtype="float32")
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166

            out_1 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[3, 3, 3])

            out_2 = paddle.nn.functional.adaptive_max_pool3d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[2, 3, 5])

            #out_4 = paddle.nn.functional.adaptive_max_pool3d(
            #    x=x, output_size=[3, 3, 3], data_format="NDHWC")

            out_5 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[None, 3, None])

            exe = paddle.static.Executor(place=place)
            [res_1, res_2, res_3, res_5] = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_np},
                fetch_list=[out_1, out_2, out_3, out_5])

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            #assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

    def test_dynamic_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
167
            x = paddle.to_tensor(self.x_np)
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

            out_1 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[3, 3, 3])

            out_2 = paddle.nn.functional.adaptive_max_pool3d(x=x, output_size=5)

            out_3 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[2, 3, 5])

            #out_4 = paddle.nn.functional.adaptive_max_pool3d(
            #    x=x, output_size=[3, 3, 3], data_format="NDHWC")

            out_5 = paddle.nn.functional.adaptive_max_pool3d(
                x=x, output_size=[None, 3, None])

            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            #assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)


C
cnn 已提交
194
class TestAdaptiveMaxPool3DClassAPI(unittest.TestCase):
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
    def setUp(self):
        self.x_np = np.random.random([2, 3, 5, 7, 7]).astype("float32")
        self.res_1_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[3, 3, 3], pool_type="max")

        self.res_2_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=5, pool_type="max")

        self.res_3_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[2, 3, 5], pool_type="max")

        # self.res_4_np = adaptive_pool3d_forward(
        #     x=self.x_np,
        #     output_size=[3, 3, 3],
        #     pool_type="max",
        #     data_format="NDHWC")

        self.res_5_np = adaptive_pool3d_forward(
            x=self.x_np, output_size=[None, 3, None], pool_type="max")

    def test_static_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.enable_static()
C
cnn 已提交
220 221
            x = paddle.fluid.data(
                name="x", shape=[2, 3, 5, 7, 7], dtype="float32")
222

C
cnn 已提交
223
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
224 225 226
                output_size=[3, 3, 3])
            out_1 = adaptive_max_pool(x=x)

C
cnn 已提交
227
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(output_size=5)
228 229
            out_2 = adaptive_max_pool(x=x)

C
cnn 已提交
230
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
231 232 233
                output_size=[2, 3, 5])
            out_3 = adaptive_max_pool(x=x)

C
cnn 已提交
234
            #     adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
235 236 237
            #         output_size=[3, 3, 3], data_format="NDHWC")
            #     out_4 = adaptive_max_pool(x=x)

C
cnn 已提交
238
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
                output_size=[None, 3, None])
            out_5 = adaptive_max_pool(x=x)

            exe = paddle.static.Executor(place=place)
            [res_1, res_2, res_3, res_5] = exe.run(
                fluid.default_main_program(),
                feed={"x": self.x_np},
                fetch_list=[out_1, out_2, out_3, out_5])

            assert np.allclose(res_1, self.res_1_np)

            assert np.allclose(res_2, self.res_2_np)

            assert np.allclose(res_3, self.res_3_np)

            #     assert np.allclose(res_4, self.res_4_np)

            assert np.allclose(res_5, self.res_5_np)

    def test_dynamic_graph(self):
        for use_cuda in ([False, True]
                         if core.is_compiled_with_cuda() else [False]):
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
Z
Zhou Wei 已提交
263
            x = paddle.to_tensor(self.x_np)
264

C
cnn 已提交
265
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
266 267 268
                output_size=[3, 3, 3])
            out_1 = adaptive_max_pool(x=x)

C
cnn 已提交
269
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(output_size=5)
270 271
            out_2 = adaptive_max_pool(x=x)

C
cnn 已提交
272
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
273 274 275
                output_size=[2, 3, 5])
            out_3 = adaptive_max_pool(x=x)

C
cnn 已提交
276
            #     adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
277 278 279
            #         output_size=[3, 3, 3], data_format="NDHWC")
            #     out_4 = adaptive_max_pool(x=x)

C
cnn 已提交
280
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool3D(
281 282 283 284 285 286 287 288 289 290 291 292 293 294
                output_size=[None, 3, None])
            out_5 = adaptive_max_pool(x=x)

            assert np.allclose(out_1.numpy(), self.res_1_np)

            assert np.allclose(out_2.numpy(), self.res_2_np)

            assert np.allclose(out_3.numpy(), self.res_3_np)

            #     assert np.allclose(out_4.numpy(), self.res_4_np)

            assert np.allclose(out_5.numpy(), self.res_5_np)


295 296 297 298 299 300 301 302 303 304 305
class TestOutDtype(unittest.TestCase):
    def test_max_pool(self):
        api_fn = F.adaptive_max_pool3d
        shape = [1, 3, 32, 32, 32]
        check_out_dtype(
            api_fn,
            in_specs=[(shape, )],
            expect_dtypes=['float32', 'float64'],
            output_size=16)


306 307
if __name__ == '__main__':
    unittest.main()