test_wrappers.py 7.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
paddle.set_default_dtype("float64")
from paddle.fluid.layers import sequence_mask

import numpy as np
import unittest

from convert import convert_params_for_cell
from rnn_numpy import GRUCell, RNN, BiRNN


class TestRNNWrapper(unittest.TestCase):
    def __init__(self, time_major=True, direction="forward", place="cpu"):
        super(TestRNNWrapper, self).__init__("runTest")
        self.time_major = time_major
        self.direction = direction
        self.place = paddle.CPUPlace() if place == "cpu" \
            else paddle.CUDAPlace(0)

    def setUp(self):
        paddle.disable_static(self.place)
        cell1 = GRUCell(16, 32)
        cell2 = paddle.nn.GRUCell(16, 32)
        convert_params_for_cell(cell1, cell2)
        rnn1 = RNN(cell1,
                   is_reverse=self.direction == "backward",
                   time_major=self.time_major)
        rnn2 = paddle.nn.RNN(cell2,
                             is_reverse=self.direction == "backward",
                             time_major=self.time_major)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        prev_h = np.random.randn(4, 32)

        y1, h1 = rnn1(x, prev_h)
        y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h))
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, h1 = rnn1(x)
        y2, h2 = rnn2(paddle.to_tensor(x))
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, h1 = rnn1(x, sequence_length=sequence_length)

        seq_len = paddle.to_tensor(sequence_length)
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
        y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
92 93
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()


class TestBiRNNWrapper(unittest.TestCase):
    def __init__(self, time_major=True, place="cpu"):
        super(TestBiRNNWrapper, self).__init__("runTest")
        self.time_major = time_major
        self.place = paddle.CPUPlace() if place == "cpu" \
            else paddle.CUDAPlace(0)

    def setUp(self):
        paddle.disable_static(self.place)
        fw_cell1 = GRUCell(16, 32)
        bw_cell1 = GRUCell(16, 32)
        fw_cell2 = paddle.nn.GRUCell(16, 32)
        bw_cell2 = paddle.nn.GRUCell(16, 32)
        convert_params_for_cell(fw_cell1, fw_cell2)
        convert_params_for_cell(bw_cell1, bw_cell2)
        rnn1 = BiRNN(fw_cell1, bw_cell1, time_major=self.time_major)
        rnn2 = paddle.nn.BiRNN(fw_cell2, bw_cell2, time_major=self.time_major)

        self.rnn1 = rnn1
        self.rnn2 = rnn2

    def test_with_initial_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        fw_prev_h = np.random.randn(4, 32)
        bw_prev_h = np.random.randn(4, 32)

        y1, (fw_h1, bw_h1) = rnn1(x, (fw_prev_h, bw_prev_h))
        y2, (fw_h2, bw_h2) = rnn2(
            paddle.to_tensor(x),
            (paddle.to_tensor(fw_prev_h), paddle.to_tensor(bw_prev_h)))
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_zero_state(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])

        y1, (fw_h1, bw_h1) = rnn1(x)
        y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x))
        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)

    def test_with_input_lengths(self):
        rnn1 = self.rnn1
        rnn2 = self.rnn2

        x = np.random.randn(12, 4, 16)
        if not self.time_major:
            x = np.transpose(x, [1, 0, 2])
        sequence_length = np.array([12, 10, 9, 8], dtype=np.int64)

        y1, (fw_h1, bw_h1) = rnn1(x, sequence_length=sequence_length)

        seq_len = paddle.to_tensor(sequence_length)
        mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype())
        if self.time_major:
            mask = paddle.transpose(mask, [1, 0])
        y2, (fw_h2, bw_h2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len)
173 174
        mask = paddle.unsqueeze(mask, -1)
        y2 = paddle.multiply(y2, mask)
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

        np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(fw_h1, fw_h2.numpy(), atol=1e-8, rtol=1e-5)
        np.testing.assert_allclose(bw_h1, bw_h2.numpy(), atol=1e-8, rtol=1e-5)

    def runTest(self):
        self.test_with_initial_state()
        self.test_with_zero_state()
        self.test_with_input_lengths()


def load_tests(loader, tests, pattern):
    suite = unittest.TestSuite()
    devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \
        else ["cpu"]
    for direction in ["forward", "backward"]:
        for device in devices:
            for time_major in [False]:
                suite.addTest(TestRNNWrapper(time_major, direction, device))
            suite.addTest(TestBiRNNWrapper(time_major, device))
    return suite