fleet_heter_ps_training.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
import paddle.distributed.fleet as fleet
import paddle.distributed.fleet.base.role_maker as role_maker

fluid.disable_dygraph()


def get_dataset(inputs):
    dataset = fluid.DatasetFactory().create_dataset()
    dataset.set_use_var(inputs)
    dataset.set_batch_size(1)
    dataset.set_filelist([])
    dataset.set_thread(1)
    return dataset


def net(batch_size=4, lr=0.01):
    """
        network definition

        Args:
            batch_size(int): the size of mini-batch for training
            lr(float): learning rate of training
        Returns:
            avg_cost: LoDTensor of cost.
        """
    dnn_input_dim, lr_input_dim = int(2), int(2)

    with fluid.device_guard("cpu"):
        dnn_data = fluid.layers.data(
            name="dnn_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        lr_data = fluid.layers.data(
            name="lr_data",
            shape=[-1, 1],
            dtype="int64",
            lod_level=1,
            append_batch_size=False)
        label = fluid.layers.data(
            name="click",
            shape=[-1, 1],
            dtype="float32",
            lod_level=0,
            append_batch_size=False)

        datas = [dnn_data, lr_data, label]

        # build dnn model
        dnn_layer_dims = [2, 1]
        dnn_embedding = fluid.layers.embedding(
            is_distributed=False,
            input=dnn_data,
            size=[dnn_input_dim, dnn_layer_dims[0]],
            param_attr=fluid.ParamAttr(
                name="deep_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        dnn_pool = fluid.layers.sequence_pool(
            input=dnn_embedding, pool_type="sum")
        dnn_out = dnn_pool

        # build lr model
        lr_embbding = fluid.layers.embedding(
            is_distributed=False,
            input=lr_data,
            size=[lr_input_dim, 1],
            param_attr=fluid.ParamAttr(
                name="wide_embedding",
                initializer=fluid.initializer.Constant(value=0.01)),
            is_sparse=True)
        lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum")

    with fluid.device_guard("gpu"):
        for i, dim in enumerate(dnn_layer_dims[1:]):
            fc = fluid.layers.fc(
                input=dnn_out,
                size=dim,
                act="relu",
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.Constant(value=0.01)),
                name='dnn-fc-%d' % i)
            dnn_out = fc

        merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1)
        label = fluid.layers.cast(label, dtype="int64")
        predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax')

        cost = fluid.layers.cross_entropy(input=predict, label=label)
        avg_cost = fluid.layers.mean(x=cost)
    return datas, avg_cost


'''
optimizer = fluid.optimizer.Adam(learning_rate=0.01)

role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)

strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
strategy.a_sync_configs = {"heter_worker_device_guard": 'gpu'}

strategy.pipeline = True
strategy.pipeline_configs = {"accumulate_steps": 1, "micro_batch_size": 2048}
feeds, avg_cost = net()
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(avg_cost)
dataset = get_dataset(feeds)
'''

if fleet.is_server():
    pass
    #fleet.init_server()
    #fleet.run_server()
elif fleet.is_heter_worker():
    pass
    #fleet.init_heter_worker()
    #fleet.run_heter_worker(dataset=dataset)
    fleet.stop_worker()
elif fleet.is_worker():
    pass
    #place = fluid.CPUPlace()
    #exe = fluid.Executor(place)
    #exe.run(fluid.default_startup_program())
    #fleet.init_worker()
    #step = 1
    #for i in range(step):
    #    exe.train_from_dataset(
    #        program=fluid.default_main_program(), dataset=dataset, debug=False)
    #exe.close()
    #fleet.stop_worker()