common.py 6.8 KB
Newer Older
D
dangqingqing 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import requests
Y
Yu Yang 已提交
18
import hashlib
Y
Yu Yang 已提交
19
import os
20
import errno
Y
Yu Yang 已提交
21
import shutil
M
minqiyang 已提交
22
import six
H
Helin Wang 已提交
23
import sys
24
import importlib
25
import paddle.dataset
26
import six.moves.cPickle as pickle
27
import glob
28
import paddle
Y
Yu Yang 已提交
29

30 31
__all__ = []

S
Steffy-zxf 已提交
32 33
HOME = os.path.expanduser('~')
DATA_HOME = os.path.join(HOME, '.cache', 'paddle', 'dataset')
Y
Yu Yang 已提交
34

35

36 37 38 39 40
# When running unit tests, there could be multiple processes that
# trying to create DATA_HOME directory simultaneously, so we cannot
# use a if condition to check for the existence of the directory;
# instead, we use the filesystem as the synchronization mechanism by
# catching returned errors.
41 42 43 44 45 46 47 48 49 50
def must_mkdirs(path):
    try:
        os.makedirs(DATA_HOME)
    except OSError as exc:
        if exc.errno != errno.EEXIST:
            raise
        pass


must_mkdirs(DATA_HOME)
Y
Yu Yang 已提交
51 52


53 54 55 56 57 58 59
def md5file(fname):
    hash_md5 = hashlib.md5()
    f = open(fname, "rb")
    for chunk in iter(lambda: f.read(4096), b""):
        hash_md5.update(chunk)
    f.close()
    return hash_md5.hexdigest()
60 61


Y
ying 已提交
62
def download(url, module_name, md5sum, save_name=None):
63 64 65 66
    dirname = os.path.join(DATA_HOME, module_name)
    if not os.path.exists(dirname):
        os.makedirs(dirname)

Y
ying 已提交
67 68 69 70
    filename = os.path.join(dirname,
                            url.split('/')[-1]
                            if save_name is None else save_name)

71 72 73
    if os.path.exists(filename) and md5file(filename) == md5sum:
        return filename

Y
Yu Yang 已提交
74 75 76
    retry = 0
    retry_limit = 3
    while not (os.path.exists(filename) and md5file(filename) == md5sum):
T
wip  
typhoonzero 已提交
77
        if os.path.exists(filename):
H
hong 已提交
78
            sys.stderr.write("file %s  md5 %s\n" % (md5file(filename), md5sum))
Y
Yu Yang 已提交
79 80 81
        if retry < retry_limit:
            retry += 1
        else:
82
            raise RuntimeError("Cannot download {0} within retry limit {1}".
Y
Yu Yang 已提交
83
                               format(url, retry_limit))
H
hong 已提交
84
        sys.stderr.write("Cache file %s not found, downloading %s \n" %
85
                         (filename, url))
H
hong 已提交
86
        sys.stderr.write("Begin to download\n")
H
hong 已提交
87 88 89 90 91 92 93 94 95 96 97 98
        try:
            r = requests.get(url, stream=True)
            total_length = r.headers.get('content-length')

            if total_length is None:
                with open(filename, 'wb') as f:
                    shutil.copyfileobj(r.raw, f)
            else:
                with open(filename, 'wb') as f:
                    chunk_size = 4096
                    total_length = int(total_length)
                    total_iter = total_length / chunk_size + 1
99
                    log_interval = total_iter // 20 if total_iter > 20 else 1
H
hong 已提交
100
                    log_index = 0
101 102
                    bar = paddle.hapi.progressbar.ProgressBar(
                        total_iter, name='item')
H
hong 已提交
103 104 105
                    for data in r.iter_content(chunk_size=chunk_size):
                        f.write(data)
                        log_index += 1
106
                        bar.update(log_index, {})
H
hong 已提交
107
                        if log_index % log_interval == 0:
108 109
                            bar.update(log_index)

H
hong 已提交
110 111 112
        except Exception as e:
            # re-try
            continue
H
hong 已提交
113
    sys.stderr.write("\nDownload finished\n")
114
    sys.stdout.flush()
115
    return filename
Y
Yi Wang 已提交
116 117


118
def fetch_all():
119 120 121
    for module_name in [
            x for x in dir(paddle.dataset) if not x.startswith("__")
    ]:
122
        if "fetch" in dir(
123
                importlib.import_module("paddle.dataset.%s" % module_name)):
124
            getattr(
125
                importlib.import_module("paddle.dataset.%s" % module_name),
126
                "fetch")()
127 128


129
def split(reader, line_count, suffix="%05d.pickle", dumper=pickle.dump):
130 131 132
    """
    you can call the function as:

133
    split(paddle.dataset.cifar.train10(), line_count=1000,
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
        suffix="imikolov-train-%05d.pickle")

    the output files as:

    |-imikolov-train-00000.pickle
    |-imikolov-train-00001.pickle
    |- ...
    |-imikolov-train-00480.pickle

    :param reader: is a reader creator
    :param line_count: line count for each file
    :param suffix: the suffix for the output files, should contain "%d"
                means the id for each file. Default is "%05d.pickle"
    :param dumper: is a callable function that dump object to file, this
                function will be called as dumper(obj, f) and obj is the object
                will be dumped, f is a file object. Default is cPickle.dump.
    """
    if not callable(dumper):
        raise TypeError("dumper should be callable.")
    lines = []
    indx_f = 0
    for i, d in enumerate(reader()):
        lines.append(d)
        if i >= line_count and i % line_count == 0:
            with open(suffix % indx_f, "w") as f:
                dumper(lines, f)
                lines = []
                indx_f += 1
    if lines:
        with open(suffix % indx_f, "w") as f:
            dumper(lines, f)


def cluster_files_reader(files_pattern,
                         trainer_count,
                         trainer_id,
170
                         loader=pickle.load):
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    """
    Create a reader that yield element from the given files, select
    a file set according trainer count and trainer_id

    :param files_pattern: the files which generating by split(...)
    :param trainer_count: total trainer count
    :param trainer_id: the trainer rank id
    :param loader: is a callable function that load object from file, this
                function will be called as loader(f) and f is a file object.
                Default is cPickle.load
    """

    def reader():
        if not callable(loader):
            raise TypeError("loader should be callable.")
        file_list = glob.glob(files_pattern)
        file_list.sort()
        my_file_list = []
        for idx, fn in enumerate(file_list):
            if idx % trainer_count == trainer_id:
191
                print("append file: %s" % fn)
192 193 194 195 196 197 198 199
                my_file_list.append(fn)
        for fn in my_file_list:
            with open(fn, "r") as f:
                lines = loader(f)
                for line in lines:
                    yield line

    return reader
200 201 202 203 204 205 206 207 208 209 210


def _check_exists_and_download(path, url, md5, module_name, download=True):
    if path and os.path.exists(path):
        return path

    if download:
        return paddle.dataset.common.download(url, module_name, md5)
    else:
        raise ValueError('{} not exists and auto download disabled'.format(
            path))