ptq_quantizer.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import six
import abc
import copy
import math
import numpy as np

import paddle

from . import utils
24
from ..cal_kl_threshold import cal_kl_threshold
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259

__all__ = [
    'BaseQuantizer',
    'AbsmaxQuantizer',
    'PerChannelAbsmaxQuantizer',
    'KLQuantizer',
    'HistQuantizer',
]


def abs_max_value(tensor):
    return float(paddle.max(paddle.abs(tensor)).numpy())


def merge_max_value(old, new):
    """
    Merge the max element one by one in two lists.
    """
    assert isinstance(old, list) and isinstance(new, list)
    if old != []:
        assert len(old) == len(new)
        for i in range(len(old)):
            assert type(old[i]) == type(new[i])
            if isinstance(old[i], list):
                new[i] = merge_max_value(old[i], new[i])
            else:
                new[i] = old[i] if new[i] < old[i] else new[i]
    return new


def combine_abs_max_and_hist(tensor, origin_max, origin_hist, bins,
                             upsample_bins):
    """
    """

    new_max = abs_max_value(tensor)

    if new_max == 0.0:
        return origin_max, origin_hist
    elif origin_max == 0.0:
        new_hist, _ = np.histogram(
            paddle.abs(tensor).numpy(), range=(0, new_max), bins=bins)
        new_hist = new_hist.astype(np.float32)
        return new_max, new_hist
    elif new_max <= origin_max:
        new_hist, _ = np.histogram(
            paddle.abs(tensor).numpy(), range=(0, origin_max), bins=bins)
        new_hist = new_hist.astype(np.float32)
        new_hist += origin_hist
        return origin_max, new_hist
    else:
        # bin_width = origin_max / (bins * upsample_bins) 
        #           = new_max / (bins * downsample_bins)
        bin_width = origin_max / (bins * upsample_bins)
        downsampe_bins = int(math.ceil(new_max / (bins * bin_width)))
        new_max = bins * bin_width * downsampe_bins

        upsampled_hist = np.repeat(origin_hist, upsample_bins)
        expanded_hist = np.zeros((bins * downsampe_bins), dtype=np.float32)
        expanded_hist[0:bins * upsample_bins] = upsampled_hist
        cumsumed_hist = np.cumsum(
            expanded_hist, dtype=np.float64)[downsampe_bins - 1::downsampe_bins]
        shift_cumsumed_hist = np.zeros((bins), dtype=np.float64)
        shift_cumsumed_hist[1:] = cumsumed_hist[0:-1]
        sampled_hist = (cumsumed_hist - shift_cumsumed_hist) / upsample_bins
        sampled_hist = sampled_hist.astype(np.float32)

        new_hist, _ = np.histogram(
            paddle.abs(tensor).numpy(), range=(0, new_max), bins=bins)
        new_hist = new_hist.astype(np.float32)
        new_hist += sampled_hist

        return new_max, new_hist


@six.add_metaclass(abc.ABCMeta)
class BaseQuantizer(object):
    """
    Base quantizer for activation and weight.
    """

    def __init__(self, quant_bits=8):
        super(BaseQuantizer, self).__init__()
        assert isinstance(quant_bits, int)
        assert quant_bits > 0 and quant_bits <= 16

        self.quant_bits = quant_bits

        self.thresholds = []

    @abc.abstractmethod
    def sample_data(self, layer, tensors):
        pass

    @abc.abstractmethod
    def cal_thresholds(self):
        pass


class AbsmaxQuantizer(BaseQuantizer):
    """
    Per-tensor abs max quantizer.
    """

    def __init__(self, quant_bits=8):
        super(AbsmaxQuantizer, self).__init__(quant_bits)

    def sample_data(self, layer, tensors):
        assert isinstance(tensors, tuple)

        abs_max_vals = [abs_max_value(t) for t in tensors]
        self.thresholds = merge_max_value(self.thresholds, abs_max_vals)

    def cal_thresholds(self):
        pass


class PerChannelAbsmaxQuantizer(BaseQuantizer):
    """
    Per channel abs max quantizer.
    """

    def __init__(self, quant_bits=8):
        super(PerChannelAbsmaxQuantizer, self).__init__(quant_bits)

    def sample_data(self, layer, tensors):
        assert isinstance(layer, paddle.nn.Layer)
        assert isinstance(tensors, tuple)

        abs_max_vals_list = []
        for idx, tensor in enumerate(tensors):
            if isinstance(layer, tuple(utils.spec_channel_axis_layers)):
                abs_max_vals = [
                    abs_max_value(tensor[:, i]) for i in range(tensor.shape[1])
                ]
                abs_max_vals_list.append(abs_max_vals)
            else:
                abs_max_vals = [
                    abs_max_value(tensor[i]) for i in range(tensor.shape[0])
                ]
                abs_max_vals_list.append(abs_max_vals)

        self.thresholds = merge_max_value(self.thresholds, abs_max_vals_list)

    def cal_thresholds(self):
        pass


@six.add_metaclass(abc.ABCMeta)
class BaseHistQuantizer(BaseQuantizer):
    """
    """

    def __init__(self, quant_bits=8, bins=1024, upsample_bins=64):
        super(BaseHistQuantizer, self).__init__(quant_bits)
        self.bins = bins
        self.upsample_bins = upsample_bins

        self.abs_max_vals = []
        self.hists = []

    def sample_data(self, layer, tensors):
        assert isinstance(tensors, tuple)

        if self.abs_max_vals == []:
            abs_max_vals = [abs_max_value(t) for t in tensors]
            self.abs_max_vals = abs_max_vals

            for idx, tensor in enumerate(tensors):
                if abs_max_vals[idx] == 0.0:
                    self.hists.append(None)
                else:
                    hist, _ = np.histogram(
                        paddle.abs(tensor).numpy(),
                        range=(0., abs_max_vals[idx]),
                        bins=self.bins)
                    hist = hist.astype(np.float32)
                    self.hists.append(hist)
        else:
            assert len(self.abs_max_vals) == len(tensors)
            assert len(self.hists) == len(tensors)

            for idx, tensor in enumerate(tensors):
                new_abs_max, new_hist = combine_abs_max_and_hist(
                    tensor, self.abs_max_vals[idx], self.hists[idx], self.bins,
                    self.upsample_bins)
                self.abs_max_vals[idx] = new_abs_max
                self.hists[idx] = new_hist

    @abc.abstractmethod
    def cal_thresholds(self):
        pass


class HistQuantizer(BaseHistQuantizer):
    """
    """

    def __init__(self,
                 quant_bits=8,
                 bins=1024,
                 upsample_bins=64,
                 hist_percent=0.99999):
        super(HistQuantizer, self).__init__(quant_bits, bins, upsample_bins)
        self.hist_percent = hist_percent

    def cal_thresholds(self):
        def _helper(abs_max, hist, percent):
            assert hist.ndim == 1 and percent < 1.0
            hist = hist / np.sum(hist, dtype=np.float64)
            cumsumed_hist = np.cumsum(hist)
            index = np.argwhere(cumsumed_hist >= percent)[0]
            return float((index - 0.5) * (abs_max / hist.shape[0]))

        for idx in range(len(self.hists)):
            if self.hists[idx] is None:
                self.thresholds.append(self.abs_max_vals[idx])
            else:
                threshold = _helper(self.abs_max_vals[idx], self.hists[idx],
                                    self.hist_percent)
                self.thresholds.append(threshold)


class KLQuantizer(BaseHistQuantizer):
    """
    """

    def __init__(self, quant_bits=8, bins=1024, upsample_bins=64):
        super(KLQuantizer, self).__init__(quant_bits, bins, upsample_bins)

    def cal_thresholds(self):
        for idx in range(len(self.hists)):
            if self.hists[idx] is None:
                self.thresholds.append(self.abs_max_vals[idx])
            else:
260 261 262 263
                hist = self.hists[idx]
                abs_max_val = self.abs_max_vals[idx]
                bin_width = abs_max_val / hist.shape[0]
                threshold = cal_kl_threshold(hist, bin_width, self.quant_bits)
264
                self.thresholds.append(threshold)