common.py 17.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import warnings
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.layers.tensor import Variable, fill_constant

19 20 21 22 23 24 25 26 27 28 29 30 31
# TODO: define the common functions to build a neural network  
# __all__ = ['dropout',
#            'embedding',
#            'fc',
#            'label_smooth',
#            'one_hot',
#            'pad',
#            'pad_constant_like',
#            'pad2d',
#            'unfold',
#            'bilinear_tensor_product',
#            'assign',
#            'interpolate']
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423

__all__ = ['interpolate']


def interpolate(input,
                out_shape=None,
                scale=None,
                name=None,
                resample='BILINEAR',
                actual_shape=None,
                align_corners=True,
                align_mode=1,
                data_format='NCHW'):
    """
    This op resizes a batch of images.
    The input must be a 4-D Tensor of the shape (num_batches, channels, in_h, in_w)
    or (num_batches, in_h, in_w, channels), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
    and the resizing only applies on the three dimensions(depth, height and width).
    **Warning:** the parameter :attr:`actual_shape` will be deprecated in the
    future and only use :attr:`out_shape` instead.
    Supporting resample methods:
        'BILINEAR' : Bilinear interpolation
        'TRILINEAR' : Trilinear interpolation
        'NEAREST' : Nearest neighbor interpolation
        'BICUBIC' : Bicubic interpolation

    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
    Align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

    Example:

    .. code-block:: text

        For scale:

            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)

            else:

              scale_factor = float(in_size/out_size)


        Nearest neighbor interpolation:

          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Bicubic interpolation:

          if:
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5

          else:

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:

              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
    Parameters:
        input (Variable): 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
        out_shape(list|tuple|Variable|None): Output shape of image resize
             layer, the shape is (out_h, out_w) when input is a 4-D Tensor and is
             (out_d, out_h, out_w) when input is a 5-D Tensor. Default: None. If
             a list, each element can be an integer or a Tensor Variable of shape: [1].
             If a Tensor Variable, its dimensions size should be a 1.
        scale(float|Variable|None): The multiplier for the input height or width. At
             least one of :attr:`out_shape` or :attr:`scale` must be set.
             And :attr:`out_shape` has a higher priority than :attr:`scale`.
             Default: None.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
        resample(str): The resample method. It supports 'BILINEAR', 'TRILINEAR' ,
                       'BICUBIC' and 'NEAREST' currently. Default: 'BILINEAR'
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
                                :attr:`out_shape` and :attr:`scale` specifying
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                :attr:`out_shape` if you want to specify output
                                shape dynamically, because :attr:`actual_shape`
                                will be deprecated. When using actual_shape to
                                specify output shape, one of :attr:`out_shape`
                                and :attr:`scale` should also be set, otherwise
                                errors would be occurred in graph constructing stage.
                                Default: None
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: True
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\'
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from: `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
    Returns:
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
        ValueError: The 'resample' of image_resize can only be 'BILINEAR',
                    'TRILINEAR', 'BICUBIC', or 'NEAREST' currently.
        ValueError: 'BILINEAR', 'BICUBIC' and 'NEAREST' only support 4-D tensor.
        ValueError: 'TRILINEAR' only support 5-D tensor.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2 for input 4-D tensor.
        ValueError: out_shape length should be 3 for input 5-D tensor.
        ValueError: scale should be greater than zero.
        TypeError: align_corners should be a bool value
        ValueError: align_mode can only be '0' or '1'
        ValueError: data_format can only be 'NCHW', 'NHWC', 'NCDHW' or 'NDHWC'.
    Examples:
        .. code-block:: python

	    #declarative mode
	    import paddle
	    import numpy as np
	    input = fluid.data(name="input", shape=[None,3,6,10])
	    #1
	    output = paddle.nn.functional.interpolate(input=input,out_shape=[12,12])
	    #2
	    #x = np.array([2]).astype("int32")
	    #dim1 = fluid.data(name="dim1", shape=[1], dtype="int32")
	    #fluid.layers.assign(input=x, output=dim1)
	    #output = paddle.nn.functional.interpolate(input=input,out_shape=[12,dim1])
	    #3
	    #x = np.array([3,12]).astype("int32")
	    #shape_tensor = fluid.data(name="shape_tensor", shape=[2], dtype="int32")
	    #fluid.layers.assign(input=x, output=shape_tensor)
	    #output = paddle.nn.functional.interpolate(input=input,out_shape=shape_tensor)
	    #4
	    #x = np.array([0.5]).astype("float32")
	    #scale_tensor = fluid.data(name="scale", shape=[1], dtype="float32")
	    #fluid.layers.assign(x,scale_tensor)
	    #output = paddle.nn.functional.interpolate(input=input,scale=scale_tensor)
	    place = fluid.CPUPlace()
	    exe = fluid.Executor(place)
	    exe.run(fluid.default_startup_program())

	    input_data = np.random.rand(2,3,6,10).astype("float32")
	    output_data = exe.run(fluid.default_main_program(),
                feed={"input":input_data},
                fetch_list=[output],
                return_numpy=True)

	    print(output_data[0].shape)
	    #1
	    # (2, 3, 12, 12)
	    #2
	    # (2, 3, 12, 2)
	    #3
	    # (2, 3, 3, 12)
	    #4
	    # (2, 3, 3, 5)
	    #imperative mode
	    import paddle.fluid.dygraph as dg
	    with dg.guard(place) as g:
    		input = dg.to_variable(input_data)
    		output = paddle.nn.functional.interpolate(input=input, out_shape=[12,12])
    		print(output.shape)
		# [2L, 3L, 12L, 12L]
    """
    resample_methods = {
        'BILINEAR': 'bilinear',
        'TRILINEAR': 'trilinear',
        'NEAREST': 'nearest',
        'BICUBIC': 'bicubic',
    }
    if resample not in resample_methods:
        raise ValueError(
            "The 'resample' of image_resize can only be 'BILINEAR', 'TRILINEAR', "
            " 'BICUBIC' or 'NEAREST' currently.")
    resample_type = resample_methods[resample]

    if resample in ['BILINEAR', 'NEAREST', 'BICUBIC'] and len(input.shape) != 4:
        raise ValueError(
            "'BILINEAR', 'BICUBIC' and 'NEAREST' only support 4-D tensor.")
    if resample == 'TRILINEAR' and len(input.shape) != 5:
        raise ValueError("'TRILINEAR'only support 5-D tensor.")

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

    if out_shape is None and scale is None:
        raise ValueError("One of out_shape and scale must not be None.")
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
    dtype = helper.input_dtype()

    if len(input.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCHW` or `NHWC` supported for 4-D input.")
    elif len(input.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
        raise ValueError(
            "Got wrong value for param `data_format`: " + data_format +
            " received but only `NCDHW` or `NDHWC` supported for 5-D input.")

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if data_format == 'NCHW' or data_format == 'NCDHW':
        data_layout = 'NCHW'
    if data_format == 'NHWC' or data_format == 'NDHWC':
        data_layout = 'NHWC'

    inputs = {"X": input}
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
        "data_layout": data_layout
    }

    if out_shape is not None:
        if isinstance(out_shape, Variable):
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
            if not (_is_list_or_turple_(out_shape)):
                raise TypeError(
                    "out_shape should be a list or tuple or Variable.")
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
                assert dim_size > 0, (
                    "Each dimension size given in out_shape must be greater than 0."
                )

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
                        assert (isinstance(dim, int))
                        temp_out = helper.create_variable_for_type_inference(
                            'int32')
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out)
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

            if len(input.shape) == 4:
                if len(out_shape) != 2:
                    raise ValueError("out_shape length should be 2 for "
                                     "input 4-D tensor.")
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
            if len(input.shape) == 5:
                if len(out_shape) != 3:
                    raise ValueError("out_shape length should be 3 for "
                                     "input 5-D tensor.")
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = float(scale)
        else:
            raise TypeError(
                "Attr(scale)'s type should be float, int or Variable.")

    if isinstance(actual_shape, Variable):
        warnings.warn(
            "actual_shape will be deprecated, it is recommended to use "
            "out_shape instead of actual_shape to specify output shape dynamically."
        )
        actual_shape.stop_gradient = True
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='{}_interp'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs)
    return out