jit_kernel.cc 7.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <functional>
T
tensor-tang 已提交
17
#include <string>
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/cpu_vec.h"
T
tensor-tang 已提交
19 20 21 22 23 24 25 26

#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif
T
tensor-tang 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {

T
tensor-tang 已提交
33 34
namespace jit = platform::jit;

T
tensor-tang 已提交
35 36 37 38
KernelPool& KernelPool::Instance() {
  static KernelPool g_jit_kernels;
  return g_jit_kernels;
}
T
tensor-tang 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
#define SEARCH_BLOCK(src, t, isa)       \
  if (d < AVX_FLOAT_BLOCK) {            \
    Compute = src<t, isa, kLT8>;        \
  } else if (d == AVX_FLOAT_BLOCK) {    \
    Compute = src<t, isa, kEQ8>;        \
  } else if (d == AVX512_FLOAT_BLOCK) { \
    Compute = src<t, isa, kEQ16>;       \
  } else {                              \
    Compute = src<t, isa, kGT16>;       \
  }

#define SEARCH_ISA_BLOCK(src, t)              \
  if (jit::MayIUse(jit::avx512_common)) {     \
    SEARCH_BLOCK(src, t, jit::avx512_common); \
  } else if (jit::MayIUse(jit::avx2)) {       \
    SEARCH_BLOCK(src, t, jit::avx2);          \
  } else if (jit::MayIUse(jit::avx)) {        \
    SEARCH_BLOCK(src, t, jit::avx);           \
  } else {                                    \
    SEARCH_BLOCK(src, t, jit::isa_any);       \
  }

#define FOR_EACH_BLOCK(macro_, isa) \
  macro_(isa, kLT8) macro_(isa, kEQ8) macro_(isa, kEQ16) macro_(isa, kGT16)

#define FOR_EACH_ISA_BLOCK(macro_)           \
  FOR_EACH_BLOCK(macro_, jit::avx512_common) \
  FOR_EACH_BLOCK(macro_, jit::avx2)          \
  FOR_EACH_BLOCK(macro_, jit::avx)           \
  FOR_EACH_BLOCK(macro_, jit::any)

#define VMUL_ANY                \
  for (int i = 0; i < n; ++i) { \
    z[i] = x[i] * y[i];         \
  }

template <typename T, platform::jit::cpu_isa_t isa, jit_block>
static void VMulCompute(const int n, const T* x, const T* y, T* z) {
  VMUL_ANY
}

#ifdef PADDLE_USE_MKLML
#define DEFINE_VMUL_COMPUTE_FLOAT(isa, block)                             \
  template <>                                                             \
  static void VMulCompute<float, isa, block>(const int n, const float* x, \
                                             const float* y, float* z) {  \
    platform::dynload::vsMul(n, x, y, z);                                 \
  }

#define DEFINE_VMUL_COMPUTE_DOUBLE(isa, block)                              \
  template <>                                                               \
  static void VMulCompute<double, isa, block>(const int n, const double* x, \
                                              const double* y, float* z) {  \
    platform::dynload::vdMul(n, x, y, z);                                   \
  }

FOR_EACH_ISA_BLOCK(DEFINE_VMUL_COMPUTE_FLOAT)
FOR_EACH_ISA_BLOCK(DEFINE_VMUL_COMPUTE_DOUBLE)
// TODO(TJ): add EQ8
#endif

#undef DEFINE_VMUL_COMPUTE_FLOAT
#undef DEFINE_VMUL_COMPUTE_DOUBLE
#undef VMUL_ANY

template <>
VMulKernel<float>::VMulKernel(int d) {
  SEARCH_ISA_BLOCK(VMulCompute, float);
}

template <>
VMulKernel<double>::VMulKernel(int d) {
  SEARCH_ISA_BLOCK(VMulCompute, double);
}

template <>
const std::shared_ptr<VMulKernel<float>> KernelPool::Get<VMulKernel<float>>(
    int d) {
  std::string key = "f" + std::to_string(d);
  if (kers_.find(key) == kers_.end()) {
    auto p = std::make_shared<VMulKernel<float>>(d);
    kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
    return p;
  }
  return std::dynamic_pointer_cast<VMulKernel<float>>(kers_.at(key));
}

template <>
const std::shared_ptr<VMulKernel<double>> KernelPool::Get<VMulKernel<double>>(
    int d) {
  std::string key = "d" + std::to_string(d);
  if (kers_.find(key) == kers_.end()) {
    auto p = std::make_shared<VMulKernel<double>>(d);
    kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
    return p;
  }
  return std::dynamic_pointer_cast<VMulKernel<double>>(kers_.at(key));
}
T
tensor-tang 已提交
137

T
tensor-tang 已提交
138 139 140 141 142
template <>
LSTMKernel<float>::LSTMKernel(int d, const std::string& act_gate_str,
                              const std::string& act_cand_str,
                              const std::string& act_cell_str)
    : Kernel(), d_(d) {
T
tensor-tang 已提交
143 144
  d2_ = d * 2;
  d3_ = d * 3;
T
tensor-tang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  if (platform::jit::MayIUse(platform::jit::avx512_common)) {
    math::VecActivations<float, platform::jit::avx512_common> act_functor;
    act_gate_ = act_functor(act_gate_str);
    act_cell_ = act_functor(act_cell_str);
    act_cand_ = act_functor(act_cand_str);
  } else if (platform::jit::MayIUse(platform::jit::avx2)) {
    math::VecActivations<float, platform::jit::avx2> act_functor;
    act_gate_ = act_functor(act_gate_str);
    act_cell_ = act_functor(act_cell_str);
    act_cand_ = act_functor(act_cand_str);
  } else if (platform::jit::MayIUse(platform::jit::avx)) {
    math::VecActivations<float, platform::jit::avx> act_functor;
    act_gate_ = act_functor(act_gate_str);
    act_cell_ = act_functor(act_cell_str);
    act_cand_ = act_functor(act_cand_str);
T
tensor-tang 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    //   ComputeCtHt = [&](float*gates,const float*ct_1,float*ct, float*ht) {
    // // gates: W_ch, W_ih, W_fh, W_oh
    // act_gate(d3_, gates + d_, gates + d_);

    // /* C_t = C_t-1 * fgated + cand_gated * igated */
    // act_cand(d_, gates, gates);
    // blas.VMUL(d_, gates, gates + d_, gates + d_);
    // blas.VMUL(d_, ct_1, gates + d2_, gates + d2_);
    // blas.VADD(d_, gates + d_, gates + d2_, ct);

    // /* H_t = act_cell(C_t) * ogated */
    // act_cell(d_, ct, gates + d2_);
    // blas.VMUL(d_, gates + d2_, gates + d3_, ht)
    // GET_Ct(ct_1, gates, ct);
    // GET_Ht(ct, gates, ht);
    //   };
T
tensor-tang 已提交
176 177 178 179 180 181 182 183
  } else {
    math::VecActivations<float, platform::jit::isa_any> act_functor;
    act_gate_ = act_functor(act_gate_str);
    act_cell_ = act_functor(act_cell_str);
    act_cand_ = act_functor(act_cand_str);
  }
}

T
tensor-tang 已提交
184 185 186 187 188 189
template <>
const std::shared_ptr<LSTMKernel<float>>
KernelPool::Get<LSTMKernel<float>, int, const std::string&, const std::string&,
                const std::string&>(int d, const std::string& act_gate,
                                    const std::string& act_cand,
                                    const std::string& act_cell) {
T
tensor-tang 已提交
190 191 192 193 194 195 196 197
  std::string key = "f" + std::to_string(d) + act_gate + act_cand + act_cell;
  if (kers_.find(key) == kers_.end()) {
    auto p =
        std::make_shared<LSTMKernel<float>>(d, act_gate, act_cand, act_cell);
    kers_.insert({key, std::dynamic_pointer_cast<Kernel>(p)});
    return p;
  }
  return std::dynamic_pointer_cast<LSTMKernel<float>>(kers_.at(key));
T
tensor-tang 已提交
198 199 200 201 202 203
}

}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle