test_ir_inplace_pass.py 2.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import unittest
import numpy as np
D
dzhwinter 已提交
20
import paddle.fluid.core as core
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
import paddle.fluid as fluid
from parallel_executor_test_base import TestParallelExecutorBase


def fc_with_batchnorm(use_feed):
    img = fluid.layers.data(name='image', shape=[784], dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    hidden = img
    for _ in range(3):
        hidden = fluid.layers.fc(
            hidden,
            size=200,
            act='tanh',
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=1.0)))

        hidden = fluid.layers.batch_norm(input=hidden)
    prediction = fluid.layers.fc(hidden, size=10, act='softmax')
    loss = fluid.layers.cross_entropy(input=prediction, label=label)
    loss = fluid.layers.mean(loss)
    return loss


class TestIrInplace(TestParallelExecutorBase):
    @classmethod
    def setUpClass(cls):
        os.environ['CPU_NUM'] = str(4)

50
    def _fc_with_batchnorm(self, ir_memory_optimize, enable_inplace):
D
dzhwinter 已提交
51 52 53

        if not core.is_compiled_with_cuda():
            return
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        np.random.seed(5)
        img = np.random.random(size=[32, 784]).astype(np.float32)
        label = np.ones(shape=[32, 1], dtype='int64')
        self.check_network_convergence(
            fc_with_batchnorm,
            feed_dict={"image": img,
                       "label": label},
            use_cuda=True,
            use_ir_memory_optimize=ir_memory_optimize,
            enable_inplace=enable_inplace)

    def test_fc_with_batchnorm(self, delta=1e-3):
        loss00 = self._fc_with_batchnorm(False, False)
        loss10 = self._fc_with_batchnorm(True, False)
        loss01 = self._fc_with_batchnorm(False, True)
        loss11 = self._fc_with_batchnorm(True, True)
        self.assertAlmostEqual(loss00, loss10, delta=delta)
        self.assertAlmostEqual(loss00, loss01, delta=delta)
        self.assertAlmostEqual(loss00, loss11, delta=delta)
73 74 75 76


if __name__ == '__main__':
    unittest.main()