dgc_optimizer.py 18.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

14
import logging
15
from functools import reduce
16

17 18
from .meta_optimizer_base import MetaOptimizerBase

19 20
__all__ = []

21 22 23 24 25
import paddle
from paddle import framework
from paddle.common_ops_import import LayerHelper
from paddle.fluid.clip import GradientClipByNorm, append_gradient_clip_ops
from paddle.fluid.dygraph import base as imperative_base
26 27
from paddle.fluid.optimizer import Momentum, Optimizer
from paddle.framework import core
28
from paddle.static import create_global_var
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219


class DGCMomentumOptimizer(Optimizer):
    _u_velocity_acc_str = "_dgc_u_"
    _v_velocity_acc_str = "_dgc_v_"

    def __init__(
        self,
        learning_rate,
        momentum,
        rampup_begin_step,
        rampup_step=1,
        sparsity=[0.999],
        parameter_list=None,
        use_nesterov=False,
        num_trainers=None,
        regularization=None,
        grad_clip=None,
        name=None,
    ):
        if framework._non_static_mode():
            raise Exception("In dygraph, don't support DGCMomentumOptimizer.")

        assert (
            core.is_compiled_with_cuda()
        ), "Paddle is not compiled with CUDA. DGC is only support GPU for now."

        assert learning_rate is not None
        assert momentum is not None
        super().__init__(
            learning_rate=learning_rate,
            parameter_list=parameter_list,
            regularization=regularization,
            grad_clip=grad_clip,
            name=name,
        )
        self.type = "dgc_momentum"
        self._momentum = momentum
        self._use_nesterov = bool(use_nesterov)

        assert rampup_begin_step >= 0, "rampup_begin_step must >= 0"
        self._rampup_begin_step = rampup_begin_step
        self._rampup_step = rampup_step
        self._sparsity = sparsity

        self._rampup_begin_step_var = None
        self._global_step_var = None

        self._dgc_clip_norm = None
        if grad_clip is not None:
            if not isinstance(grad_clip, GradientClipByNorm):
                raise TypeError(
                    "The type of grad_clip should be 'GradientClipByNorm', because DGCMomentumOptimizer only support GradientClipByNorm"
                )
            assert isinstance(num_trainers, int), (
                "The type of num_trainers should be 'int', but received %s"
                % type(num_trainers)
            )
            assert (
                num_trainers > 0
            ), "The value of num_trainers should be greater than 0!"

            self._num_trainers = num_trainers
            self._dgc_clip_norm = grad_clip.clip_norm * (num_trainers**-0.5)

        self.regular_type, self.regular_coeff = self._get_regularization_param(
            self.regularization
        )

    def _get_regularization_param(self, regularization):
        regular_type = 0
        regular_coeff = 0.0

        if regularization is not None:
            regular_coeff = regularization._regularization_coeff
            from paddle.fluid.regularizer import L1Decay, L2Decay

            if isinstance(regularization, L1Decay):
                regular_type = 1
            elif isinstance(regularization, L2Decay):
                regular_type = 2
            else:
                assert False, 'regularization must be None|L1Decay|L2Deacy'
        return regular_type, regular_coeff

    def _is_use_dgc(self, param_var, grad_var):
        var_numel = abs(reduce(lambda x, y: x * y, param_var.shape))
        if (
            var_numel < 16384
            or param_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or grad_var.type == core.VarDesc.VarType.SELECTED_ROWS
            or param_var.dtype != core.VarDesc.VarType.FP32
        ):
            return False
        return True

    def _append_optimize_op(self, block, param_and_grad):
        assert isinstance(block, paddle.fluid.framework.Block)
        velocity_acc = self._get_accumulator(
            self._u_velocity_acc_str, param_and_grad[0]
        )
        assert velocity_acc is not None

        inputs = {
            "Param": param_and_grad[0],
            "Grad": param_and_grad[1],
            "Velocity": velocity_acc,
            "LearningRate": self._create_param_lr(param_and_grad),
        }
        outputs = {
            "ParamOut": param_and_grad[0],
            "VelocityOut": velocity_acc,
        }
        attrs = {"mu": self._momentum, "use_nesterov": self._use_nesterov}

        if not self._is_use_dgc(param_and_grad[0], param_and_grad[1]):
            type = "momentum"
        else:
            type = "dgc_momentum"
            inputs.update(
                {
                    "current_step": self._global_step_var,
                    "nranks": self._nranks_var,
                }
            )
            outputs.update({'Grad_out': param_and_grad[1]})
            attrs.update({"rampup_begin_step": float(self._rampup_begin_step)})

        # create the dgc momentum optimize op
        dgc_momentum_op = block.append_op(
            type=type,
            inputs=inputs,
            outputs=outputs,
            attrs=attrs,
            stop_gradient=True,
        )
        return dgc_momentum_op

    def _add_auto_increment_var(self, counter_name, begin, step=1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=counter_name, dtype='float32', shape=[1], persistable=True
        )
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=paddle.fluid.initializer.Constant(
                    value=float(begin - 1), force_cpu=True
                ),
            )
            helper.main_program.global_block()._prepend_op(
                type='increment',
                inputs={'X': [counter]},
                outputs={'Out': [counter]},
                attrs={'step': float(step)},
                stop_gradient=True,
            )
            counter.stop_gradient = True

        return counter

    def _add_nranks_var(self, name, value=-1):
        helper = LayerHelper('global_step_counter')
        counter, is_new_var = helper.create_or_get_global_variable(
            name=name, dtype='float32', shape=[1], persistable=True
        )
        if is_new_var:
            helper.set_variable_initializer(
                counter,
                initializer=paddle.fluid.initializer.Constant(
                    value=float(value), force_cpu=True
                ),
            )
            counter.stop_gradient = True

        return counter

    def _append_dgc_ops(self, param_and_grads):
        main_program = paddle.static.default_main_program()
        main_program._enable_dgc = True

        # step counter
        self._global_step_var = self._add_auto_increment_var(
            counter_name=core.dgc.kDGCCounterName(), begin=0
        )

        self._nranks_var = self._add_nranks_var(
            name=core.dgc.kDGCNRanksName(), value=-1
        )

        # rampup begin step var for all_reduce_op_handle
220
        self._rampup_begin_step_var = create_global_var(
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            shape=[1],
            dtype=core.VarDesc.VarType.FP32,
            persistable=True,
            name=core.dgc.kDGCRampUpBeginStepName(),
            value=self._rampup_begin_step * 1.0,
            force_cpu=True,
        )

        self.helper = LayerHelper(self.__class__.__name__)

        for param_var, grad_var in param_and_grads:
            # reuse velocity in dgc_op and dgc_momentum_op
            u_var = self._add_accumulator(self._u_velocity_acc_str, param_var)

            if not self._is_use_dgc(param_var, grad_var):
                continue

            v_var = self._add_accumulator(self._v_velocity_acc_str, param_var)

240
            k_var = create_global_var(
241 242 243 244 245 246 247 248
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCKName(),
                value=0.0,
                force_cpu=True,
            )

249
            encoded_var = create_global_var(
250 251 252 253 254 255 256 257
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCEncodedName(),
                value=0.0,
                force_cpu=False,
            )

258
            gather_var = create_global_var(
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
                shape=[1],
                dtype=param_var.dtype,
                persistable=True,
                name=param_var.name + core.dgc.kDGCGatherName(),
                value=0.0,
                force_cpu=False,
            )

            # del back oprolevarname
            op_maker = core.op_proto_and_checker_maker
            backward = core.op_proto_and_checker_maker.OpRole.Backward
            for op in main_program.global_block().ops:
                if not self._is_the_backward_op(op):
                    continue

                var_attr = op.all_attrs()[op_maker.kOpRoleVarAttrName()]
                if param_var.name not in var_attr:
                    continue

                var_attr.remove(param_var.name)
                var_attr.remove(grad_var.name)
                if len(var_attr) > 1:
                    op._set_attr(op_maker.kOpRoleVarAttrName(), var_attr)
                else:
                    op._remove_attr(op_maker.kOpRoleVarAttrName())

            clip_var = grad_var
            if self._dgc_clip_norm is not None:
                clip_var = self._append_clip_norm(grad_var, self._dgc_clip_norm)
            self._dgc_op(
                param_var,
                clip_var,
                grad_var,
                u_var,
                v_var,
                k_var,
                encoded_var,
                gather_var,
            )

    def _is_the_backward_op(self, op):
        op_maker = core.op_proto_and_checker_maker
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        if op_maker.kOpRoleVarAttrName() in op.attr_names and int(
            op.all_attrs()[op_maker.kOpRoleAttrName()]
        ) == int(backward):
            return True
        return False

    def _clip_by_norm(self, x, max_norm, name=None):
        args = {'x': x, 'max_norm': max_norm, 'name': name}

        helper = LayerHelper("dgc_clip_by_norm_op", **args)

        if name is None:
            name = paddle.fluid.unique_name.generate_with_ignorable_key(
                ".".join([helper.name, 'tmp'])
            )

        out = helper.create_variable(
            type=x.type, name=name, dtype=x.dtype, persistable=False
        )

        helper.append_op(
            type="dgc_clip_by_norm",
            inputs={"X": x, "current_step": self._global_step_var},
            attrs={
                "max_norm": max_norm,
                "rampup_begin_step": float(self._rampup_begin_step),
            },
            outputs={"Out": out},
        )
        return out

    def _append_clip_norm(self, grad_var, clip_norm):
        with grad_var.block.program._backward_role_guard():
            return self._clip_by_norm(
                x=grad_var, max_norm=clip_norm, name=grad_var.name
            )

    def _dgc_op(
        self,
        param_var,
        clip_var,
        grad_var,
        u_var,
        v_var,
        k_var,
        encoded_var,
        gather_var,
    ):
        block = paddle.static.default_main_program().global_block()
        op_maker = core.op_proto_and_checker_maker

        regular_type = self.regular_type
        regular_coeff = self.regular_coeff
        # The regularizer of the Parameters have higher priority
        if param_var.regularizer is not None:
            regular_type, regular_coeff = self._get_regularization_param(
                param_var.regularizer
            )

        dgc_op = block.append_op(
            type="dgc",
            inputs={
                "U": u_var,
                "V": v_var,
                "Grad": clip_var,
                "Param": param_var,
                "current_step": self._global_step_var,
                "nranks": self._nranks_var,
            },
            outputs={
                "U_out": u_var,
                "V_out": v_var,
                "EncodeGrad": encoded_var,
                "k": k_var,
                "Grad_out": grad_var,
                "GatherBuff": gather_var,
            },
            attrs={
                "m": self._momentum,
                "sparsity": self._sparsity,
                "use_nesterov": self._use_nesterov,
                "rampup_begin_step": float(self._rampup_begin_step),
                "rampup_step": float(self._rampup_step),
                "regular_coeff": float(regular_coeff),
                "regular_type": int(regular_type),
            },
            stop_gradient=True,
        )

        backward = op_maker.OpRole.Backward
        dgc_op._set_attr(op_maker.kOpRoleAttrName(), backward)
        dgc_op._set_attr(
            op_maker.kOpRoleVarAttrName(), [param_var.name, grad_var.name]
        )

    @imperative_base.no_grad()
    def apply_gradients(self, params_grads):
        # Note: since we can't use all_reduce_op now,
        # dgc_op should be the last op of one grad.
        # Maybe need a grad allreduce pass.
        self._append_dgc_ops(params_grads)

        params_grads = sorted(params_grads, key=lambda x: x[0].name)
        (
            params_grads,
            table_param_and_grad,
            table_optimize_op,
        ) = self._process_distribute_lookuptable(params_grads)

        not_dgc_params_grads = []
        dgc_params_grads = []
        # DGC clip and regularization in optimizer.backward
        for param, grad in params_grads:
            if not self._is_use_dgc(param, grad):
                not_dgc_params_grads.append((param, grad))
            else:
                dgc_params_grads.append((param, grad))

        # 'optimizer(grad_clip)' or 'set_gradient_clip'
        if self._grad_clip is not None:
            not_dgc_params_grads = self._grad_clip(not_dgc_params_grads)
        else:
            not_dgc_params_grads = append_gradient_clip_ops(
                not_dgc_params_grads
            )

        not_dgc_params_grads = self.append_regularization_ops(
            not_dgc_params_grads, self.regularization
        )

        params_grads = not_dgc_params_grads + dgc_params_grads
        params_grads = sorted(params_grads, key=lambda x: x[0].name)

        optimize_ops = self._create_optimization_pass(params_grads)
        if table_optimize_op is not None:
            optimize_ops.append(table_optimize_op)
            params_grads.append(table_param_and_grad)

        return optimize_ops

442 443 444

class DGCOptimizer(MetaOptimizerBase):
    def __init__(self, optimizer):
445
        super().__init__(optimizer)
446 447 448 449
        self.inner_opt = optimizer
        self.dgc_opt = None
        # we do not allow meta optimizer to be inner optimizer currently
        self.meta_optimizers_white_list = []
450
        self.meta_optimizers_black_list = []
451

452 453 454
    def _set_basic_info(
        self, loss, role_maker, user_defined_optimizer, user_defined_strategy
    ):
455
        super()._set_basic_info(
456 457
            loss, role_maker, user_defined_optimizer, user_defined_strategy
        )
458

459 460 461 462
    def _init_dgc_opt(self):
        if self.dgc_opt is not None:
            return

463
        opt = self.inner_opt
464 465 466 467

        if not self.role_maker._is_collective:
            return

468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
        if not isinstance(opt, Momentum):
            return

        configs = self.user_defined_strategy.dgc_configs
        if len(configs['sparsity']) == 0:
            # default is [0.999]
            configs['sparsity'] = [0.999]

        self.dgc_opt = DGCMomentumOptimizer(
            learning_rate=opt._learning_rate,
            momentum=opt._momentum,
            rampup_begin_step=configs['rampup_begin_step'],
            rampup_step=configs['rampup_step'],
            sparsity=configs['sparsity'],
            parameter_list=opt._parameter_list,
            use_nesterov=opt._use_nesterov,
484
            num_trainers=self.role_maker._worker_num(),
485 486
            regularization=opt.regularization,
            grad_clip=opt._grad_clip,
487 488
            name=opt._name,
        )
489 490

    def _can_apply(self):
491 492 493
        if not self.role_maker._is_collective:
            return False

494 495 496 497
        if self.user_defined_strategy.dgc:
            if not isinstance(self.inner_opt, Momentum):
                logging.warn("dgc only works on Momentum optimizer")
                return False
498
            if self.role_maker._worker_num() <= 1:
499 500 501 502 503 504 505 506 507
                logging.warn("dgc only works on multi cards")
                return False

            return True

        return False

    def _disable_strategy(self, dist_strategy):
        dist_strategy.dgc = False
508
        dist_strategy.dgc_configs = {}
509

510
    def _enable_strategy(self, dist_strategy, context):
511 512 513
        dist_strategy.dgc = True
        dist_strategy.dgc_configs = {"rampup_begin_step": 0, "rampup_step": 1}

514 515 516 517 518 519 520 521
    def backward(
        self,
        loss,
        startup_program=None,
        parameter_list=None,
        no_grad_set=None,
        callbacks=None,
    ):
522
        self._init_dgc_opt()
523 524 525
        return self.dgc_opt.backward(
            loss, startup_program, parameter_list, no_grad_set, callbacks
        )
526

527
    def apply_gradients(self, params_grads):
528
        self._init_dgc_opt()
529 530 531
        return self.dgc_opt.apply_gradients(params_grads=params_grads)

    def apply_optimize(self, loss, startup_program, params_grads):
532
        self._init_dgc_opt()
533 534 535 536 537 538 539
        return self.dgc_opt.apply_optimize(
            loss, startup_program=startup_program, params_grads=params_grads
        )

    def minimize_impl(
        self, loss, startup_program=None, parameter_list=None, no_grad_set=None
    ):
540
        self._init_dgc_opt()
541 542 543
        optimize_ops, params_grads = self.dgc_opt.minimize(
            loss, startup_program, parameter_list, no_grad_set
        )
544
        return optimize_ops, params_grads