reduce_scatter.py 4.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.distributed.communication.stream as stream
16
import paddle.fluid.framework as framework
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
from paddle.distributed.communication.reduce import ReduceOp
from paddle.distributed.communication.stream.reduce_scatter import (
    _reduce_scatter_base as _reduce_scatter_base_stream,
)


def reduce_scatter(
    tensor, tensor_list, op=ReduceOp.SUM, group=None, sync_op=True
):
    """
    Reduces, then scatters a list of tensors to all processes in a group

    Args:
        tensor (Tensor): The output tensor on each rank. The result will overwrite this tenor after communication. Support
            float16, float32, float64, int32, int64, int8, uint8 or bool as the input data type.
        tensor_list (List[Tensor]]): List of tensors to reduce and scatter. Every element in the list must be a Tensor whose data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD, optional): The reduction used. If none is given, use ReduceOp.SUM as default.
        group (Group, optional): Communicate in which group. If none is given, use the global group as default.
        sync_op (bool, optional): Indicate whether the communication is sync or not. If none is given, use true as default.

    Returns:
        Return a task object.

    Warning:
        This API only supports the dygraph mode.


    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            if dist.get_rank() == 0:
                data1 = paddle.to_tensor([0, 1])
                data2 = paddle.to_tensor([2, 3])
            else:
                data1 = paddle.to_tensor([4, 5])
                data2 = paddle.to_tensor([6, 7])
            dist.reduce_scatter(data1, [data1, data2])
            print(data1)
            # [4, 6] (2 GPUs, out for rank 0)
            # [8, 10] (2 GPUs, out for rank 1)

    """
    if not framework._in_legacy_dygraph():
        return stream.reduce_scatter(
            tensor,
            tensor_list,
            op=op,
            group=group,
            sync_op=sync_op,
            use_calc_stream=False,
        )


def _reduce_scatter_base(
    output, input, op=ReduceOp.SUM, group=None, sync_op=True
):
    """
    Reduces, then scatters a flattened tensor to all processes in a group.

    Args:
        output (Tensor): Output tensor. Its data type should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        input (Tensor): Input tensor that is of size output tensor size times world size. Its data type
            should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16.
        op (ReduceOp.SUM|ReduceOp.MAX|ReduceOp.MIN|ReduceOp.PROD): Optional. The operation used. Default: ReduceOp.SUM.
        group (ProcessGroup, optional): The process group to work on. If None,
            the default process group will be used.
        sync_op (bool, optional): Whether this op is a sync op. The default value is True.

    Returns:
        Async task handle, if sync_op is set to False.
        None, if sync_op or if not part of the group.

    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            import paddle.distributed as dist

            dist.init_parallel_env()
            rank = dist.get_rank()
            data = paddle.arange(4) + rank
            # [0, 1, 2, 3] (2 GPUs, for rank 0)
            # [1, 2, 3, 4] (2 GPUs, for rank 1)
            output = paddle.empty(shape=[2], dtype=data.dtype)
            dist.collective._reduce_scatter_base(output, data)
            print(output)
            # [1, 3] (2 GPUs, out for rank 0)
            # [5, 7] (2 GPUs, out for rank 1)

    """
    if not framework._in_legacy_dygraph():
        return _reduce_scatter_base_stream(
            output,
            input,
            op=op,
            group=group,
            sync_op=sync_op,
            use_calc_stream=False,
        )