while_op.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Y
Yang Yang(Tony) 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Y
Yang Yang(Tony) 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Y
Yang Yang(Tony) 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yang Yang(Tony) 已提交
14 15

#include <vector>
Y
Yi Wang 已提交
16 17 18 19 20
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
Y
Yang Yang(Tony) 已提交
21 22 23 24 25 26 27

namespace paddle {
namespace operators {

using StepScopeVar = std::vector<framework::Scope *>;
using LoDTensor = framework::LoDTensor;

Y
Yang Yu 已提交
28 29 30 31 32 33
static constexpr char kStepBlock[] = "sub_block";
static constexpr char kCondition[] = "Condition";
static constexpr char kStepScopes[] = "StepScopes";
static constexpr char kX[] = "X";
static constexpr char kXGRAD[] = "X@GRAD";
static constexpr char kOutputs[] = "Out";
Y
Yang Yang(Tony) 已提交
34 35 36 37 38 39 40 41

class WhileOp : public framework::OperatorBase {
 public:
  WhileOp(const std::string &type, const framework::VariableNameMap &inputs,
          const framework::VariableNameMap &outputs,
          const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

42 43 44
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
Y
Yang Yang(Tony) 已提交
45 46 47 48
    PADDLE_ENFORCE_NOT_NULL(scope.FindVar(Input(kCondition)));
    auto &cond = scope.FindVar(Input(kCondition))->Get<LoDTensor>();
    PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1}));

D
dzhwinter 已提交
49
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
50
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
D
dzhwinter 已提交
51

Y
Yang Yang(Tony) 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    auto *program = block->Program();

    auto step_scopes =
        scope.FindVar(Output(kStepScopes))->GetMutable<StepScopeVar>();

    while (cond.data<bool>()[0]) {
      auto &current_scope = scope.NewScope();
      step_scopes->push_back(&current_scope);

      executor.Run(*program, &current_scope, block->ID(),
                   false /*create_local_scope*/);
    }
  }
};

class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
69
  WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
Y
Yang Yang(Tony) 已提交
70
      : OpProtoAndCheckerMaker(proto, op_checker) {
Y
Yang Yu 已提交
71
    AddInput(kX,
Y
Yang Yang(Tony) 已提交
72 73 74 75 76 77 78
             "A set of variables, which are required by operators inside the "
             "block of While Op.")
        .AsDuplicable();
    AddInput(
        kCondition,
        "(Bool) An scalar. When it's False, the While Op will be terminated.")
        .AsDuplicable();
Y
Yang Yang(Tony) 已提交
79
    AddOutput(kOutputs,
Y
Yang Yang(Tony) 已提交
80
              "A set of variables, which will be assigned with values "
Y
Yang Yang(Tony) 已提交
81
              "generated by the operators inside the block of While Op.")
Y
Yang Yang(Tony) 已提交
82 83 84 85 86
        .AsDuplicable();
    AddOutput(kStepScopes,
              "(StepScopeVar) A vector of local scope, which size equals the "
              "step number of While Op. The i'th scope storages temporary "
              "variables generated in the i'th step.");
Y
Yu Yang 已提交
87 88
    AddAttr<framework::BlockDesc *>(kStepBlock,
                                    "The step block inside WhileOp");
Y
Yang Yang(Tony) 已提交
89 90 91 92 93 94 95 96 97 98 99 100
    AddComment(R"DOC(
)DOC");
  }
};

class WhileGradOp : public framework::OperatorBase {
 public:
  WhileGradOp(const std::string &type, const framework::VariableNameMap &inputs,
              const framework::VariableNameMap &outputs,
              const framework::AttributeMap &attrs)
      : framework::OperatorBase(type, inputs, outputs, attrs) {}

101 102 103
 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &dev_place) const override {
104 105 106
    // get device context from pool
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(dev_place);
D
dzhwinter 已提交
107
    framework::Executor executor(dev_place);
Y
Yu Yang 已提交
108
    auto *block = Attr<framework::BlockDesc *>(kStepBlock);
Y
Yang Yang(Tony) 已提交
109 110 111 112 113
    auto *program = block->Program();

    auto *step_scopes =
        scope.FindVar(Input(kStepScopes))->GetMutable<StepScopeVar>();

Y
Yang Yang(Tony) 已提交
114 115 116 117 118 119
    auto outside_og_names = Inputs(framework::GradVarName(kOutputs));
    auto inside_og_names =
        Attr<std::vector<std::string>>("original_output_grad");

    PADDLE_ENFORCE_EQ(outside_og_names.size(), inside_og_names.size());

Y
Yang Yang(Tony) 已提交
120 121
    for (auto cur_scope_iter = step_scopes->rbegin();
         cur_scope_iter != step_scopes->rend(); ++cur_scope_iter) {
Y
Yang Yang(Tony) 已提交
122 123 124 125 126 127 128
      VLOG(3) << "Start backward at time_step "
              << cur_scope_iter - step_scopes->rbegin();
      framework::Scope &cur_scope = **cur_scope_iter;
      // Link OG from outside to inside
      for (size_t i = 0; i < outside_og_names.size(); ++i) {
        auto outside_og_name = outside_og_names[i];
        auto inside_og_name = inside_og_names[i];
129 130
        VLOG(8) << "Linking outside " << outside_og_name << " --> inside "
                << inside_og_name;
131 132 133 134 135 136
        auto &og_outside =
            detail::Ref(scope.FindVar(outside_og_name),
                        "Cannot find Outside Gradient %s", outside_og_name);
        auto &og_inside =
            detail::Ref(cur_scope.Var(inside_og_name),
                        "Cannot find inside gradient %s", inside_og_name);
Y
Yang Yang(Tony) 已提交
137 138 139 140 141 142 143 144 145 146 147 148
        if (og_outside.Type().hash_code() ==
            typeid(framework::LoDTensor).hash_code()) {
          auto &outside_tensor = og_outside.Get<framework::LoDTensor>();
          auto &inside_tensor =
              detail::Ref(og_inside.GetMutable<framework::LoDTensor>());
          inside_tensor.set_lod(outside_tensor.lod());
          inside_tensor.ShareDataWith(outside_tensor);
        } else if (og_outside.Type().hash_code() ==
                   typeid(framework::LoDTensorArray).hash_code()) {
          auto &outside_array = og_outside.Get<framework::LoDTensorArray>();
          auto &inside_array =
              detail::Ref(og_inside.GetMutable<framework::LoDTensorArray>());
149
          VLOG(8) << outside_og_name << " size = " << outside_array.size();
Y
Yang Yang(Tony) 已提交
150 151 152
          inside_array.resize(outside_array.size());

          for (size_t j = 0; j < inside_array.size(); ++j) {
153
            VLOG(8) << j << " " << outside_array[j].numel();
Y
Yang Yang(Tony) 已提交
154 155 156 157 158 159 160 161 162 163
            if (outside_array[j].numel() != 0) {
              inside_array[j].set_lod(outside_array[j].lod());
              inside_array[j].ShareDataWith(outside_array[j]);
            } else {
              PADDLE_ENFORCE_EQ(inside_array[j].numel(), 0);
            }
          }
        }
      }

Y
Yang Yang(Tony) 已提交
164 165
      executor.Run(*program, *cur_scope_iter, block->ID(), false);

Y
Yang Yu 已提交
166 167
      auto &pg_names = Outputs(kXGRAD);
      auto &p_names = Inputs(kX);
Y
Yang Yang(Tony) 已提交
168
      PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
Y
Yang Yang(Tony) 已提交
169 170
      for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
        if (pg_names[param_id] == framework::kEmptyVarName) {
171
          continue;  // parameter doesn't have gradient
Y
Yang Yang(Tony) 已提交
172 173
        }
        auto inside_grad_name = framework::GradVarName(p_names[param_id]);
Y
Yang Yang(Tony) 已提交
174

Y
Yang Yang(Tony) 已提交
175
        //  // TODO(tonyyang-svail): Not sure we need the following
Y
Yang Yang(Tony) 已提交
176 177 178 179 180 181 182 183 184 185 186
        //  // If does not compute gradient of that variable inside rnn,
        //  just
        //  // continue
        //  if (local_var_names.find(inside_grad_name) ==
        //  local_var_names.end()) {
        //    continue;
        //  }

        // zero gradient variable in step 0
        if (cur_scope_iter == step_scopes->rbegin()) {
          auto *var = (*cur_scope_iter)->FindVar(inside_grad_name);
Y
Yang Yang(Tony) 已提交
187
          PADDLE_ENFORCE_NOT_NULL(var, "Can not find var %s", inside_grad_name);
Y
Yang Yang(Tony) 已提交
188 189 190
          if (var->IsType<LoDTensor>()) {
            auto &inside_tensor = var->Get<framework::LoDTensor>();
            framework::AttributeMap attrs;
F
fengjiayi 已提交
191
            attrs["dtype"] = framework::ToDataType(inside_tensor.type());
Y
Yang Yang(Tony) 已提交
192 193 194
            attrs["shape"] = framework::vectorize2int(inside_tensor.dims());
            attrs["value"] = 0.0f;

195
            auto var_name = pg_names[param_id];
Y
Yang Yang(Tony) 已提交
196
            auto zero_op = framework::OpRegistry::CreateOp(
Y
Yiqun Liu 已提交
197
                "fill_constant", framework::VariableNameMap{},
198
                {{"Out", {var_name}}}, attrs);
D
dzhwinter 已提交
199
            zero_op->Run(scope, dev_place);
200 201 202
            scope.FindVar(var_name)
                ->GetMutable<framework::LoDTensor>()
                ->set_lod(inside_tensor.lod());
Y
Yang Yang(Tony) 已提交
203 204 205
          }
        }

Y
Yang Yang(Tony) 已提交
206
        auto new_inside_name = cur_scope.Rename(inside_grad_name);
Y
Yang Yang(Tony) 已提交
207
        auto sum_op = framework::OpRegistry::CreateOp(
Y
Yang Yang(Tony) 已提交
208
            "sum", {{"X", {pg_names[param_id], new_inside_name}}},
Y
Yiqun Liu 已提交
209
            {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{});
D
dzhwinter 已提交
210
        sum_op->Run(cur_scope, dev_place);
Y
Yang Yang(Tony) 已提交
211
        cur_scope.Rename(new_inside_name, inside_grad_name);
Y
Yang Yang(Tony) 已提交
212
      }
213 214
      dev_ctx.Wait();
      const_cast<framework::Scope &>(scope).DeleteScope(&cur_scope);
Y
Yang Yang(Tony) 已提交
215 216 217 218 219 220 221 222 223
    }
  }
};

class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
Y
Yu Yang 已提交
224
  std::unique_ptr<framework::OpDesc> Apply() const override {
F
Update  
fengjiayi 已提交
225 226 227 228 229 230 231
    auto *while_grad = new framework::OpDesc();
    while_grad->SetType("while_grad");
    while_grad->SetInput(kX, Input(kX));
    while_grad->SetInput(kOutputs, Output(kOutputs));
    while_grad->SetInput(kStepScopes, Output(kStepScopes));

    auto *grad_block = this->grad_block_[0];
Y
Yu Yang 已提交
232 233
    auto *fwd_block = grad_block->ForwardBlock();
    auto *parent_block = grad_block->ParentBlock();
234 235 236

    // Not all of IGs will be generated by inner gradient operators of while op.
    // Ignore IGs that is not generated by the inside block.
F
Update  
fengjiayi 已提交
237 238 239 240
    std::unordered_set<std::string> inner_op_outputs;
    for (const auto *op : grad_block->AllOps()) {
      for (auto &oname : op->OutputArgumentNames()) {
        inner_op_outputs.insert(oname);
241 242
      }
    }
F
Update  
fengjiayi 已提交
243
    auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
244
    for (auto &each_ig : igs) {
F
Update  
fengjiayi 已提交
245
      if (inner_op_outputs.find(each_ig) == inner_op_outputs.end()) {
246
        VLOG(8) << "Ignore " << each_ig;
247 248 249
        each_ig = framework::kEmptyVarName;
      }
    }
F
Update  
fengjiayi 已提交
250
    while_grad->SetOutput(framework::GradVarName(kX), igs);
Y
Yang Yang(Tony) 已提交
251 252 253 254

    // OG should be re-calculated by step blocks, since many outputs of while op
    // do not need to calculate gradients.
    std::unordered_set<std::string> block_ins;
F
fengjiayi 已提交
255 256 257 258 259 260 261
    block_ins.reserve(Input(kX).size() + Output(kOutputs).size());
    for (auto &p : Input(kX)) {
      block_ins.insert(p);
    }
    for (auto &o : Output(kOutputs)) {
      block_ins.insert(o);
    }
Y
Yu Yang 已提交
262
    std::unordered_set<std::string> output_grads;
F
Update  
fengjiayi 已提交
263 264 265 266
    for (const auto *op : grad_block->AllOps()) {
      for (auto &input_name : op->InputArgumentNames()) {
        // If the input of Op has been recorded or is generated by the forward
        // block, do not make it as input again.
Y
Yu Yang 已提交
267 268 269

        // The input is located in I/O or other op's outputs or the variable is
        // located in grad_block's parents
F
Update  
fengjiayi 已提交
270
        if (block_ins.find(input_name) != block_ins.end() ||
Y
Yu Yang 已提交
271 272
            (fwd_block->FindVarRecursive(input_name) != nullptr ||
             parent_block->FindVarRecursive(input_name) != nullptr)) {
Y
Yang Yang(Tony) 已提交
273 274
          continue;
        }
Y
Yu Yang 已提交
275
        output_grads.insert(input_name);
Y
Yang Yang(Tony) 已提交
276
      }
F
Update  
fengjiayi 已提交
277
      for (auto &output_name : op->OutputArgumentNames()) {
Y
Yang Yang(Tony) 已提交
278
        block_ins.insert(output_name);
Y
Yang Yang(Tony) 已提交
279 280
      }
    }
Y
Yang Yang(Tony) 已提交
281

Y
Yu Yang 已提交
282 283 284 285 286
    std::vector<std::string> output_grads_list;
    output_grads_list.resize(output_grads.size());
    std::copy(output_grads.begin(), output_grads.end(),
              output_grads_list.begin());
    while_grad->SetInput(framework::GradVarName(kOutputs), output_grads_list);
F
Update  
fengjiayi 已提交
287 288 289

    while_grad->SetAttrMap(this->Attrs());
    while_grad->SetBlockAttr(kStepBlock, *grad_block);
Y
Yang Yang(Tony) 已提交
290 291
    // record the original output gradient names, since the gradient name of
    // while operator could be renamed.
Y
Yu Yang 已提交
292
    while_grad->SetAttr("original_output_grad", output_grads_list);
Y
Yang Yang(Tony) 已提交
293

F
Update  
fengjiayi 已提交
294
    return std::unique_ptr<framework::OpDesc>(while_grad);
Y
Yang Yang(Tony) 已提交
295 296 297
  }
};

Y
Yang Yang(Tony) 已提交
298 299
class WhileGradOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
300 301
  void operator()(const framework::OpDesc &op_desc,
                  framework::BlockDesc *block) const override {
Y
Yang Yu 已提交
302 303
    auto p_names = op_desc.Input(kX);
    auto pg_names = op_desc.Output(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

    for (size_t i = 0; i < p_names.size(); ++i) {
      auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
      auto *g_var = block->FindVarRecursive(pg_names[i]);
      if (g_var != nullptr) {  // Gradient could be @EMPTY@
        VLOG(5) << "Setting " << pg_names[i] << " following " << p_names[i]
                << " type: " << p_var.GetType();
        g_var->SetType(p_var.GetType());
        g_var->SetDataType(p_var.GetDataType());
      }
    }
  }
};

class WhileGradOpShapeInference : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
Y
Yang Yu 已提交
321 322
    ctx->HasInputs(kX);
    ctx->HasOutputs(framework::GradVarName(kX));
Y
Yang Yang(Tony) 已提交
323 324 325
    ctx->HasInputs(kOutputs);
    ctx->HasInputs(framework::GradVarName(kOutputs));

Y
Yang Yu 已提交
326 327 328
    auto p_names = ctx->Inputs(kX);
    auto pg_names = ctx->Outputs(kXGRAD);
    auto var_types = ctx->GetInputsVarType(kX);
Y
Yang Yang(Tony) 已提交
329 330 331 332 333 334
    std::vector<std::string> names_to_set;
    std::vector<framework::DDim> dims_to_set;
    for (size_t i = 0; i < p_names.size(); ++i) {
      if (pg_names[i] == framework::kEmptyVarName) {
        continue;
      }
Y
Yang Yu 已提交
335
      auto dims = ctx->GetInputsElementDim(kX, i);
336
      if (var_types[i] == framework::proto::VarType::LOD_TENSOR) {
Y
Yang Yang(Tony) 已提交
337
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
338
        dims_to_set.push_back(dims);
339
      } else if (var_types[i] == framework::proto::VarType::LOD_TENSOR_ARRAY) {
Y
Yang Yang(Tony) 已提交
340 341
        // not sure how to set the dim of LOD_TENSOR_ARRAY
        names_to_set.push_back(pg_names[i]);
F
fengjiayi 已提交
342
        dims_to_set.push_back(dims);
Y
Yang Yang(Tony) 已提交
343 344 345 346 347 348
      }
    }
    ctx->SetDims(names_to_set, dims_to_set);
  }
};

Y
Yang Yang(Tony) 已提交
349 350 351 352 353 354
}  // namespace operators
}  // namespace paddle

REGISTER_OPERATOR(while, paddle::operators::WhileOp,
                  paddle::operators::WhileOpMaker,
                  paddle::operators::WhileGradOpDescMaker);
Y
Yang Yang(Tony) 已提交
355 356 357
REGISTER_OPERATOR(while_grad, paddle::operators::WhileGradOp,
                  paddle::operators::WhileGradOpShapeInference,
                  paddle::operators::WhileGradOpVarTypeInference);