internal_storage.py 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
B
Baibaifan 已提交
14 15 16 17 18 19 20 21 22 23

# The file has been adapted from fairscale file:
# https://github.com/facebookresearch/fairscale/blob/main/fairscale/nn/misc/param_bucket.py
# Git commit hash: 8acbec718f3c70a6b9785470bb9e05cd84fc3f8e
# We retain the following license from the original files:

# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
#
# This source code is licensed under the BSD license found in the
# LICENSE file in the root directory of this source tree.
24 25 26 27

import numpy as np

import paddle
28 29 30
from paddle import framework

# (TODO: GhostScreaming) It will be removed later.
31
from paddle.fluid import core
32

33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
from ..meta_parallel.sharding.sharding_utils import Type, device_guard


class InternalStorage:
    """
    This is a basic class, which is responsible for consolidating the basic storage tensor.

    """

    # Support integration parameter tensor
    def __init__(self, size, dtype, device, convert_cpu=False):
        self._params = []
        self._param_ids = []
        self._fill = 0
        self._device = device
        self._dtype = dtype

        # The actual flat tensor
        size = [size] if isinstance(size, int) else size
        if convert_cpu:
53 54 55 56 57
            value = (
                np.zeros(size, dtype=np.float16)
                if Type.fp16.value == dtype
                else np.zeros(size, dtype=np.float32)
            )
58 59 60 61
            self.buffer = core.VarBase(value=value, place=core.CPUPlace())
        else:
            self.buffer = paddle.zeros(size, dtype=dtype)

62 63 64 65
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """
66 67 68 69 70 71
        assert (
            self.buffer is not None
        ), "Cannot move a collapsed bucket, please rebuild it"
        assert (
            dtype == Type.fp32.value or Type.fp16.value
        ), "Conversion type is not supported now"
72

73 74 75 76 77
        dev_id = (
            0
            if paddle.get_device() == "cpu"
            else int(paddle.get_device().split(":")[1])
        )
78 79

        if self._device != device:
80 81 82 83 84
            tmp_buffer = (
                self.buffer.cuda(dev_id)
                if device == "gpu"
                else self.buffer.cpu()
            )
85 86 87 88 89
            for param in self._params:
                param.clear_gradient(False)
                param._gradient_set_empty(False)
            self.buffer.value().get_tensor()._clear()
            self.buffer = tmp_buffer
90
            self._device = device
91 92 93

        if dtype is not None:
            self.buffer = self.buffer.cast(dtype=dtype)
94
            self._dtype = dtype
95

96 97 98 99 100 101 102 103 104 105

class ParamStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of parameter InternalStorages.
    """

    def __init__(self, size, dtype, device):
        super().__init__(size, dtype, device, convert_cpu=True)
        self.param2align = None

106 107 108 109 110 111 112 113 114 115
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """

        super().to(device, dtype)

        if keep_alignment:
            self._array_params()

116
    @framework.no_grad()
117
    def add_rank_params(self, trainable_params, param2align, convert_gpu=True):
118 119 120 121
        """
        Add new parameters to the InternalStorage. Params becomes a view of this InternalStorage buffer.
        """

122 123 124
        assert all(
            [id(param) not in self._param_ids for param in trainable_params]
        ), "The same param cannot be checked in twice"
125 126 127 128 129 130
        assert self.buffer is not None

        self.param2align = param2align

        cpu_param_shape = list()
        for param in trainable_params:
131 132 133
            p_shape = self._add_param_as_view(
                param, param2align[param.name], convert_gpu
            )
134 135
            cpu_param_shape.append(p_shape)

136 137 138 139 140
        if convert_gpu:
            # buffer convert from cpu to cuda
            dev_id = int(paddle.get_device().split(":")[1])
            self.buffer = self.buffer.cuda(dev_id)

141 142 143
        self._fill = 0

        for idx, param in enumerate(trainable_params):
144 145 146
            self._convert_buffer(
                param, cpu_param_shape[idx], param2align[param.name]
            )
147 148 149
            self._params.append(param)
            self._param_ids.append(id(param))

150
    @framework.no_grad()
151
    def _add_param_as_view(self, param, align, convert_gpu=True):
152 153 154 155

        assert (
            param.dtype == self.buffer.dtype
        ), "Different types for the InternalStorage and the param, cannot proceed: {} - {}".format(
156 157
            param.dtype, self.buffer.dtype
        )
158 159 160 161 162 163 164 165 166 167 168 169 170

        var_end = self._fill + np.prod(param.shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        p_shape = param.shape

        origin_state = param.stop_gradient
        param.stop_gradient = True
        param.flatten_()
        param.stop_gradient = origin_state

        # Copy the current param value
171 172 173 174 175
        dev_id = (
            0
            if paddle.get_device() == "cpu"
            else int(paddle.get_device().split(":")[1])
        )
176
        with device_guard(dev_id, "cpu"):
177
            tmp_var = core.VarBase(
178 179
                tensor=self.buffer._slice(self._fill, var_end)
            )
180 181 182 183 184 185
            if convert_gpu:
                param_cpu = param.cpu()
                param.value().get_tensor()._clear()
                tmp_var.set_value(param_cpu)
            else:
                tmp_var.set_value(param)
186 187 188 189

        self._fill = offset
        return p_shape

190
    @framework.no_grad()
191 192 193 194 195 196 197 198 199 200 201 202 203
    def _convert_buffer(self, param, p_shape, align):

        var_end = self._fill + np.prod(p_shape)
        offset = var_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Convert the param value
        tmp_tensor = self.buffer._slice(self._fill, var_end)
        param.value().get_tensor()._share_data_with(tmp_tensor)
        param.value().get_tensor()._set_dims(p_shape)

        self._fill = offset

204
    @framework.no_grad()
205 206 207 208 209 210 211 212 213 214 215
    def _array_params(self):
        """
        Given the parameters which have been registered previously, rebuild the whole InternalStorage.
        """
        assert len(self._params) > 0
        assert self.param2align is not None

        self._fill = 0
        for p in self._params:
            self._convert_buffer(p, p.shape, self.param2align[p.name])  # modify

216 217 218 219 220 221

class GradStorage(InternalStorage):
    """
    This is a basic class to simplify the handling of gradient InternalStorages
    """

222 223 224
    def __init__(
        self, size, dtype, device, destination, parm2align, convert_cpu=False
    ):
225 226
        if isinstance(size, np.int64):
            size = size.tolist()
227
        super().__init__(size, dtype, device, convert_cpu)
228 229 230 231 232 233 234 235 236 237

        self._max_size = size
        self._release = False

        self.params_checked_in = 0
        self.destination = destination
        self._parm2align = parm2align
        self.sent = False

    def reset_checked_in(self):
238
        """Reset the counter of the parameter grads which have been checked in"""
239 240 241 242 243
        self.params_checked_in = 0
        self.sent = False

    @property
    def all_checked_in(self):
244
        """Judge all the expected gradient check-in happened"""
245 246 247
        return len(self._params) == self.params_checked_in

    def can_add_grad_view(self, param, align):
248 249 250 251 252
        """Is there enough InternalStorage to add this parameter gradient, and whether this param have already checked in."""
        return (
            self._fill + np.prod(param.shape) + align <= self._max_size
            and id(param) not in self._param_ids
        )
253

254 255 256 257 258 259 260 261 262 263 264 265
    def to(self, device, dtype=None, keep_alignment=True):
        """
        Move the underlying buffer
        """
        if self._release:
            self.rebuild()

        super().to(device, dtype)

        if keep_alignment:
            self._array_grads()

266
    @framework.no_grad()
267 268 269 270 271
    def add_grad(self, param, align):
        """
        Add a new parameter gradient to the InternalStorage. Param.grad becomes a view of this InternalStorage buffer.
        """

272 273 274
        assert (
            id(param) not in self._param_ids
        ), "The same gradients cannot be checked in twice"
275 276 277 278 279

        self._add_grad_as_view(param, align)
        self._params.append(param)
        self._param_ids.append(id(param))

280
    @framework.no_grad()
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    def manumal_relase(self):
        """
        Release the buffer from InternalStorage. The InternalStorage will need to be rebuilt before use.
        """
        if not self._release:
            for p in self._params:
                if p.grad is not None:
                    p.clear_gradient(False)
                    p._gradient_set_empty(False)

            self.buffer = None
            self._fill = 0
            self.params_checked_in = 0
            self._release = True

296
    @framework.no_grad()
297 298 299 300 301 302
    def rebuild(self):
        """
        Given the parameter gradients which have been registered previously, rebuild the whole InternalStorage.
        """

        if self._release:
303
            self.buffer = paddle.zeros([self._max_size], dtype=self._dtype)
304 305 306 307 308 309

            for p in self._params:
                self._add_grad_as_view(p, self._parm2align[p.name])

            self._release = False

310
    @framework.no_grad()
311 312 313 314 315 316 317 318 319
    def _array_grads(self):
        """
        Given the parameters gradients which have been registered previously, rebuild the whole InternalStorage.
        """
        if len(self._params) > 0:
            self._fill = 0
            for p in self._params:
                self._add_grad_as_view(p, self._parm2align[p.name])

320
    @framework.no_grad()
321
    def _add_grad_as_view(self, param, align):
322 323 324
        assert (
            np.prod(self.buffer.shape) > 0
        ), "Cannot add a gradient to a released InternalStorage, please rebuild"
325 326 327 328 329 330 331
        assert param.dtype == self.buffer.dtype

        grad_end = self._fill + np.prod(param.shape)
        offset = grad_end + align
        assert offset <= np.prod(self.buffer.shape)

        # Copy the current grad value to InternalStorage
332 333 334 335 336
        dev_id = (
            0
            if paddle.get_device() == "cpu"
            else int(paddle.get_device().split(":")[1])
        )
337 338 339 340 341 342 343 344 345 346 347
        if self._device == "cpu":
            with device_guard(dev_id, self._device):
                tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
                param._copy_gradient_from(tmp_var)
                tmp_var.value().get_tensor()._clear()

        elif self._device == "gpu":
            tmp_var = core.VarBase(self.buffer._slice(self._fill, grad_end))
            param._copy_gradient_from(tmp_var)
            tmp_var.value().get_tensor()._clear()

348
        self._fill = offset