affine_channel_op.cu 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Indicesou may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef __NVCC__
16
#include "cub/cub.cuh"
17 18 19 20 21 22 23
#endif

#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/cuda_primitives.h"

namespace paddle {
namespace operators {

template <typename T, framework::DataLayout layout, bool HasBias>
__global__ void KeAffineChannelCUDA(const T* x, const T* scale, const T* bias,
                                    const int C, const int HxW, const int num,
                                    T* y) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
  for (int i = gid; i < num; i += stride) {
    const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C;
    if (HasBias) {
      y[i] = scale[c] * x[i] + bias[c];
    } else {
      y[i] = scale[c] * x[i];
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");

    auto* y = ctx.Output<framework::Tensor>("Out");
    y->mutable_data<T>(ctx.GetPlace());

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

    auto dims = x->dims();
    const int num = x->numel();
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* x_d = x->data<T>();
    const T* scale_d = scale->data<T>();
    const T* bias_d = bias->data<T>();
    T* y_d = y->data<T>();

F
furnace 已提交
74 75 76
#ifdef PADDLE_WITH_HIP
    int block = 256;
#else
77
    int block = 1024;
F
furnace 已提交
78
#endif  // PADDLE_WITH_HIP
79
    int grid = (num + block - 1) / block;
Q
qingqing01 已提交
80 81 82

    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    grid = std::min(std::max(max_threads / block, 1), grid);
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    if (layout == framework::DataLayout::kNCHW) {
      KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    } else {
      KeAffineChannelCUDA<T, framework::DataLayout::kNHWC,
                          true><<<grid, block, 0, dev_ctx.stream()>>>(
          x_d, scale_d, bias_d, C, HxW, num, y_d);
    }
  }
};

template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void AffineChannelScaleBiasGradientCUDAKernel(
    const T* dy, const T* x, const int N, const int C, const int HxW, T* dscale,
    T* dbias) {
  const int outer_size = C;
  const int inner_size = N * HxW;
101
  typedef cub::BlockReduce<double, BlockDim> BlockReduce;
102 103 104 105 106 107 108 109 110 111 112 113 114
  __shared__ typename BlockReduce::TempStorage ds_storage;
  __shared__ typename BlockReduce::TempStorage db_storage;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T ds_sum = 0;
    T db_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index = layout == framework::DataLayout::kNCHW
                            ? (j / HxW * C + i) * HxW + j % HxW
                            : j * outer_size + i;
      ds_sum += dy[index] * x[index];
      db_sum += dy[index];
    }
115 116 117 118 119 120
    __syncthreads();
    auto ds_out =
        BlockReduce(ds_storage).Reduce(static_cast<double>(ds_sum), cub::Sum());
    auto db_out =
        BlockReduce(db_storage).Reduce(static_cast<double>(db_sum), cub::Sum());
    __syncthreads();
121
    if (threadIdx.x == 0) {
122 123
      dscale[i] = ds_out;
      dbias[i] = db_out;
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    }
  }
}

template <typename DeviceContext, typename T>
class AffineChannelGradCUDAKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* x = ctx.Input<framework::Tensor>("X");
    auto* scale = ctx.Input<framework::Tensor>("Scale");
    auto* bias = ctx.Input<framework::Tensor>("Bias");
    auto* dy = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));

    auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
    auto* dscale =
        ctx.Output<framework::Tensor>(framework::GradVarName("Scale"));
    auto* dbias = ctx.Output<framework::Tensor>(framework::GradVarName("Bias"));

    const framework::DataLayout layout =
        framework::StringToDataLayout(ctx.Attr<std::string>("data_layout"));
    auto& dev_ctx = ctx.template device_context<DeviceContext>();

Z
Zeng Jinle 已提交
146 147
    auto dims = dy->dims();
    const int num = dy->numel();
148 149 150 151 152 153 154 155 156 157 158 159
    int N = dims[0];
    int C = layout == framework::DataLayout::kNCHW ? dims[1]
                                                   : dims[dims.size() - 1];
    int HxW = num / N / C;

    const T* dy_d = dy->data<T>();
    const T* s_d = scale->data<T>();

    T* dx_d = dx ? dx->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* ds_d = dscale ? dscale->mutable_data<T>(ctx.GetPlace()) : nullptr;
    T* db_d = dbias ? dbias->mutable_data<T>(ctx.GetPlace()) : nullptr;

F
furnace 已提交
160 161 162
#ifdef PADDLE_WITH_HIP
    const int block = 256;
#else
163
    const int block = 1024;
F
furnace 已提交
164
#endif  // PADDLE_WITH_HIP
165 166 167 168 169 170
    int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
    const int max_blocks = std::max(max_threads / block, 1);
    int grid1 = (num + block - 1) / block;
    int grid2 = std::min(C, max_blocks);
    if (layout == framework::DataLayout::kNCHW) {
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
171
        const T* x_d = x->data<T>();
172 173 174 175 176 177
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNCHW><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
      if (dx) {
178
        KeAffineChannelCUDA<T, framework::DataLayout::kNCHW,
179 180 181
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
182
    } else {
183
      if (dscale && dbias) {
Z
Zeng Jinle 已提交
184
        const T* x_d = x->data<T>();
185 186 187 188 189
        AffineChannelScaleBiasGradientCUDAKernel<
            T, block, framework::DataLayout::kNHWC><<<grid2, block, 0,
                                                      dev_ctx.stream()>>>(
            dy_d, x_d, N, C, HxW, ds_d, db_d);
      }
190 191 192 193 194 195

      if (dx) {
        KeAffineChannelCUDA<T, framework::DataLayout::kNHWC,
                            false><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_d, s_d, nullptr, C, HxW, num, dx_d);
      }
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
using CUDA = paddle::platform::CUDADeviceContext;

REGISTER_OP_CUDA_KERNEL(affine_channel,
                        ops::AffineChannelCUDAKernel<CUDA, float>,
                        ops::AffineChannelCUDAKernel<CUDA, double>);
REGISTER_OP_CUDA_KERNEL(affine_channel_grad,
                        ops::AffineChannelGradCUDAKernel<CUDA, float>,
                        ops::AffineChannelGradCUDAKernel<CUDA, double>);