sequence_lstm.conf 2.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#!/usr/bin/env python
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict'
dict_file = dict()
for line_count, line in enumerate(open(dict_path, "r")):
    dict_file[line.strip()] = line_count

define_py_data_sources2(
    train_list='gserver/tests/Sequence/train.list',
    test_list=None,
    module='sequenceGen',
    obj='process',
    args={"dict_file": dict_file})

settings(batch_size=5)
######################## network configure ################################
dict_dim = len(open(dict_path, 'r').readlines())
word_dim = 128
hidden_dim = 256
label_dim = 3
sparse_update = get_config_arg("sparse_update", bool, False)

data = data_layer(name="word", size=dict_dim)

emb = embedding_layer(
    input=data,
    size=word_dim,
    param_attr=ParamAttr(sparse_update=sparse_update))

with mixed_layer(size=hidden_dim * 4) as lstm_input:
    lstm_input += full_matrix_projection(input=emb)

lstm = lstmemory(
    input=lstm_input,
    act=TanhActivation(),
    gate_act=SigmoidActivation(),
    state_act=TanhActivation())

lstm_last = last_seq(input=lstm)

with mixed_layer(
        size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output:
    output += full_matrix_projection(input=lstm_last)

outputs(
    classification_cost(
        input=output, label=data_layer(
            name="label", size=1)))