wmt14.py 5.4 KB
Newer Older
H
Helin Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Q
qijun 已提交
15
WMT14 dataset.
Q
qijun 已提交
16 17
The original WMT14 dataset is too large and a small set of data for set is
provided. This module will download dataset from
Q
qijun 已提交
18
http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz and
Q
qijun 已提交
19
parse training set and test set into paddle reader creators.
Q
qijun 已提交
20

H
Helin Wang 已提交
21
"""
Q
qiaolongfei 已提交
22
import tarfile
L
Luo Tao 已提交
23
import gzip
Q
qiaolongfei 已提交
24

25
from paddle.v2.dataset.common import download
L
Luo Tao 已提交
26
from paddle.v2.parameters import Parameters
H
Helin Wang 已提交
27 28 29 30 31

__all__ = ['train', 'test', 'build_dict']

URL_DEV_TEST = 'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST = '7d7897317ddd8ba0ae5c5fa7248d3ff5'
32
# this is a small set of data for test. The original data is too large and will be add later.
H
Helin Wang 已提交
33
URL_TRAIN = 'http://paddlepaddle.cdn.bcebos.com/demo/wmt_shrinked_data/wmt14.tgz'
L
Luo Tao 已提交
34
MD5_TRAIN = '0791583d57d5beb693b9414c5b36798c'
L
Luo Tao 已提交
35 36
# this is the pretrained model, whose bleu = 26.92
URL_MODEL = 'http://paddlepaddle.bj.bcebos.com/demo/wmt_14/wmt14_model.tar.gz'
L
Luo Tao 已提交
37
MD5_MODEL = '4ce14a26607fb8a1cc23bcdedb1895e4'
Q
qiaolongfei 已提交
38 39 40 41 42 43

START = "<s>"
END = "<e>"
UNK = "<unk>"
UNK_IDX = 2

Q
qiaolongfei 已提交
44 45 46

def __read_to_dict__(tar_file, dict_size):
    def __to_dict__(fd, size):
Q
qiaolongfei 已提交
47
        out_dict = dict()
Q
qiaolongfei 已提交
48 49
        for line_count, line in enumerate(fd):
            if line_count < size:
Q
qiaolongfei 已提交
50 51 52
                out_dict[line.strip()] = line_count
            else:
                break
Q
qiaolongfei 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        return out_dict

    with tarfile.open(tar_file, mode='r') as f:
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("src.dict")
        ]
        assert len(names) == 1
        src_dict = __to_dict__(f.extractfile(names[0]), dict_size)
        names = [
            each_item.name for each_item in f
            if each_item.name.endswith("trg.dict")
        ]
        assert len(names) == 1
        trg_dict = __to_dict__(f.extractfile(names[0]), dict_size)
        return src_dict, trg_dict


def reader_creator(tar_file, file_name, dict_size):
    def reader():
        src_dict, trg_dict = __read_to_dict__(tar_file, dict_size)
        with tarfile.open(tar_file, mode='r') as f:
            names = [
                each_item.name for each_item in f
                if each_item.name.endswith(file_name)
H
Helin Wang 已提交
78
            ]
Q
qiaolongfei 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            for name in names:
                for line in f.extractfile(name):
                    line_split = line.strip().split('\t')
                    if len(line_split) != 2:
                        continue
                    src_seq = line_split[0]  # one source sequence
                    src_words = src_seq.split()
                    src_ids = [
                        src_dict.get(w, UNK_IDX)
                        for w in [START] + src_words + [END]
                    ]

                    trg_seq = line_split[1]  # one target sequence
                    trg_words = trg_seq.split()
                    trg_ids = [trg_dict.get(w, UNK_IDX) for w in trg_words]

                    # remove sequence whose length > 80 in training mode
                    if len(src_ids) > 80 or len(trg_ids) > 80:
                        continue
                    trg_ids_next = trg_ids + [trg_dict[END]]
                    trg_ids = [trg_dict[START]] + trg_ids

                    yield src_ids, trg_ids, trg_ids_next

    return reader


def train(dict_size):
Q
qijun 已提交
107
    """
Q
qijun 已提交
108
    WMT14 training set creator.
Q
qijun 已提交
109

Q
qijun 已提交
110 111 112
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
113

Q
qijun 已提交
114
    :return: Training reader creator
Q
qijun 已提交
115 116
    :rtype: callable
    """
Q
qiaolongfei 已提交
117
    return reader_creator(
118
        download(URL_TRAIN, 'wmt14', MD5_TRAIN), 'train/train', dict_size)
Q
qiaolongfei 已提交
119 120 121


def test(dict_size):
Q
qijun 已提交
122 123 124
    """
    WMT14 test set creator.

Q
qijun 已提交
125 126 127
    It returns a reader creator, each sample in the reader is source language
    word ID sequence, target language word ID sequence and next word ID
    sequence.
Q
qijun 已提交
128

Q
qijun 已提交
129
    :return: Test reader creator
Q
qijun 已提交
130 131
    :rtype: callable
    """
Q
qiaolongfei 已提交
132
    return reader_creator(
133
        download(URL_TRAIN, 'wmt14', MD5_TRAIN), 'test/test', dict_size)
Y
Yancey1989 已提交
134 135


L
Luo Tao 已提交
136 137 138 139 140
def gen(dict_size):
    return reader_creator(
        download(URL_TRAIN, 'wmt14', MD5_TRAIN), 'gen/gen', dict_size)


L
Luo Tao 已提交
141 142 143 144 145 146 147
def model():
    tar_file = download(URL_MODEL, 'wmt14', MD5_MODEL)
    with gzip.open(tar_file, 'r') as f:
        parameters = Parameters.from_tar(f)
    return parameters


L
Luo Tao 已提交
148 149 150
def get_dict(dict_size, reverse=True):
    # if reverse = False, return dict = {'a':'001', 'b':'002', ...}
    # else reverse = true, return dict = {'001':'a', '002':'b', ...}
L
Luo Tao 已提交
151 152
    tar_file = download(URL_TRAIN, 'wmt14', MD5_TRAIN)
    src_dict, trg_dict = __read_to_dict__(tar_file, dict_size)
L
Luo Tao 已提交
153 154 155 156
    if reverse:
        src_dict = {v: k for k, v in src_dict.items()}
        trg_dict = {v: k for k, v in trg_dict.items()}
    return src_dict, trg_dict
L
Luo Tao 已提交
157 158


159 160
def fetch():
    download(URL_TRAIN, 'wmt14', MD5_TRAIN)
L
Luo Tao 已提交
161
    download(URL_MODEL, 'wmt14', MD5_MODEL)