lrn_op.h 4.1 KB
Newer Older
G
gongweibao 已提交
1 2
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15 16 17 18 19 20 21 22 23

#pragma once

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
template <typename place, typename T>
struct LRNFunctor {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& input, framework::Tensor* out,
                  framework::Tensor* mid, int N, int C, int H, int W, int n,
                  T k, T alpha, T beta);
};

Q
QI JUN 已提交
32
template <typename DeviceContext, typename T>
G
gongweibao 已提交
33 34 35 36 37 38 39 40 41
class LRNKernel : public framework::OpKernel<T> {
 public:
  using Tensor = framework::Tensor;

  // f(x) = x * ( k + alpha * SUM((x)^2) )^(-beta)
  // x represents inputs
  // f(x) represents outputs
  void Compute(const framework::ExecutionContext& ctx) const override {
    // input
42 43
    const Tensor& x = *ctx.Input<Tensor>("X");
    auto x_dims = x.dims();
G
gongweibao 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    // NCHW
    int N = x_dims[0];
    int C = x_dims[1];
    int H = x_dims[2];
    int W = x_dims[3];

    Tensor* out = ctx.Output<Tensor>("Out");
    out->mutable_data<T>(ctx.GetPlace());

    // MidOut save the intermediate result for backward
    Tensor* mid = ctx.Output<Tensor>("MidOut");
    mid->mutable_data<T>(ctx.GetPlace());

    int n = ctx.Attr<int>("n");
    T alpha = ctx.Attr<float>("alpha");
    T beta = ctx.Attr<float>("beta");
    T k = ctx.Attr<float>("k");

    PADDLE_ENFORCE(n > 0, "n should >= 0");
    PADDLE_ENFORCE(alpha >= 0.0, "alpha should >= 0.0");
    PADDLE_ENFORCE(beta >= 0.0, "beta should >= 0.0");
    PADDLE_ENFORCE(k >= 0.0, "k should >= 0.0");

Q
QI JUN 已提交
68
    LRNFunctor<DeviceContext, T> f;
69
    f(ctx, x, out, mid, N, C, H, W, n, k, alpha, beta);
G
gongweibao 已提交
70 71 72
  }
};

Q
QI JUN 已提交
73
template <typename DeviceContext, typename T>
74 75 76 77 78 79 80 81
struct LRNGradFunctor {
  void operator()(const framework::ExecutionContext& ctx,
                  const framework::Tensor& x, const framework::Tensor& out,
                  const framework::Tensor& mid, framework::Tensor* x_g,
                  const framework::Tensor& out_g, int N, int C, int H, int W,
                  int n, T alpha, T beta);
};

G
gongweibao 已提交
82 83 84 85 86 87 88 89
/**
 * \brief Backward calculation for normalization with across maps.
 *
 * Function implementation:
 *
 * The implementation of this Function is derived from the
 * CrossMapNormalFunc implementation.
 *
90
 * InputGrad = OutputGrad * MidOut ^ (-beta)
G
gongweibao 已提交
91 92 93 94 95 96 97 98 99 100
 *    -- upper
 *  + > (OutputGrad * OutputValue * (-2 * alpha * beta) / MidOut) * InputValue
 *    -- lower
 *
 * The data of inputs/outputs format is the same as the forward interface
 * and is NCHW.
 *
 * The upper and lower is the same as forward. The logic of the sum
 * is also the same as forward.
 */
Q
QI JUN 已提交
101
template <typename DeviceContext, typename T>
G
gongweibao 已提交
102 103 104 105
class LRNGradKernel : public framework::OpKernel<T> {
 public:
  using Tensor = framework::Tensor;
  void Compute(const framework::ExecutionContext& ctx) const override {
106 107 108 109
    const Tensor& x = *ctx.Input<Tensor>("X");
    const Tensor& out = *ctx.Input<Tensor>("Out");
    const Tensor& out_g = *ctx.Input<Tensor>(framework::GradVarName("Out"));
    const Tensor& mid = *ctx.Input<Tensor>("MidOut");
G
gongweibao 已提交
110 111 112 113

    auto x_g = ctx.Output<Tensor>(framework::GradVarName("X"));
    x_g->mutable_data<T>(ctx.GetPlace());

114
    auto x_dims = x.dims();
G
gongweibao 已提交
115 116 117 118 119 120 121 122
    int N = x_dims[0];
    int C = x_dims[1];
    int H = x_dims[2];
    int W = x_dims[3];

    int n = ctx.Attr<int>("n");
    T alpha = ctx.Attr<T>("alpha");
    T beta = ctx.Attr<T>("beta");
123

Q
QI JUN 已提交
124
    LRNGradFunctor<DeviceContext, T> f;
125
    f(ctx, x, out, mid, x_g, out_g, N, C, H, W, n, alpha, beta);
G
gongweibao 已提交
126 127 128 129 130
  }
};

}  // namespace operators
}  // namespace paddle